Skip to main content
Log in

Volumetric quantitative characterization of human patellar cartilage with topological and geometrical features on phase-contrast X-ray computed tomography

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Phase-contrast X-ray computed tomography (PCI-CT) has attracted significant interest in recent years for its ability to provide significantly improved image contrast in low absorbing materials such as soft biological tissue. In the research context of cartilage imaging, previous studies have demonstrated the ability of PCI-CT to visualize structural details of human patellar cartilage matrix and capture changes to chondrocyte organization induced by osteoarthritis. This study evaluates the use of geometrical and topological features for volumetric characterization of such chondrocyte patterns in the presence (or absence) of osteoarthritic damage. Geometrical features derived from the scaling index method (SIM) and topological features derived from Minkowski Functionals were extracted from 1392 volumes of interest (VOI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. These features were subsequently used in a machine learning task with support vector regression to classify VOIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver operating characteristic curve (AUC). Our results show that the classification performance of SIM-derived geometrical features (AUC: 0.90 ± 0.09) is significantly better than Minkowski Functionals volume (AUC: 0.54 ± 0.02), surface (AUC: 0.72 ± 0.06), mean breadth (AUC: 0.74 ± 0.06) and Euler characteristic (AUC: 0.78 ± 0.04) (\(p<10^{-4}\)). These results suggest that such geometrical features can provide a detailed characterization of the chondrocyte organization in the cartilage matrix in an automated manner, while also enabling classification of cartilage as healthy or osteoarthritic with high accuracy. Such features could potentially serve as diagnostic imaging markers for evaluating osteoarthritis progression and its response to different therapeutic intervention strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Acharya U, Mookiah M, Sree S, Afonso D, Sanches J, Shafique S, Nicolaides A, Pedro L, Fernandes J, Suri J (2013) Atherosclerotic plaque tissue characterization in 2D ultrasound longitudinal carotid scans for automated classification: a paradigm for stroke risk assessment. Med Biol Eng Comput 51(5):513

    Article  PubMed  Google Scholar 

  2. Bashir A, Gray M, Boutin R, Burstein D (1997) Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 205(2):551

    Article  CAS  PubMed  Google Scholar 

  3. Boehm H, Raeth C, Monetti R, Mueller D, Newitt D, Majumdar S, Rummeny E, Morfill G, Link T (2003) Local 3D scaling properties for the analysis of trabecular bone extracted from high-resolution magnetic resonance imaging of human trabecular bone: comparison with bone mineral density in the prediction of biomechanical strength in vitro. Investig Radiol 38(5):269

    CAS  Google Scholar 

  4. Boehm H, Vogel T, Panteleon A, Burklein D, Bitterling H, Reiser M (2007) Differentiation between post-menopausal women with and without hip fractures: enhanced evaluation of clinical DXA by topological analysis of the mineral distribution in the scan images. Osteoporos Int 18(6):779

    Article  CAS  PubMed  Google Scholar 

  5. Boehm H, Fink C, Attenberger U, Becker C, Behr J, Reiser M (2008) Automated classification of normal and pathologic pulmonary tissue by topological texture features extracted from multi-detector CT in 3D. Eur Radiol 18(12):2745

    Article  CAS  PubMed  Google Scholar 

  6. Bravin A (2003) Exploiting the X-ray refraction contrast with an analyser: the state of the art. J Phys D Appl Phys 36(10A):24

    Article  Google Scholar 

  7. Bravin A, Coan P, Suortti P (2013) X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys Biol Med 58(1):R1

    Article  Google Scholar 

  8. Castelli E, Tonutti M, Arfelli F, Longo R, Quaia E, Rigon L, Sanabor D, Zanconati F, Dreossi D, Abrami A, Quai E, Bregant P, Casarin K, Chenda V, Menk R, Rokvic T, Vascotto A, Tromba G, Cova M (2011) Mammography with synchrotron radiation: first clinical experience with phase-detection technique. Radiology 259(3):684–694

    Article  PubMed  Google Scholar 

  9. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2, 27:1. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

  10. Chapman D, Thomlinson W, Johnston R, Washburn D, Pisano E, Gmür N, Zhong Z, Menk R, Arfelli F, Sayers D (1997) Diffraction enhanced X-ray imaging. Phys Med Biol 42(11):2015

    Article  CAS  PubMed  Google Scholar 

  11. Coan P, Peterzol A, Fiedler S, Ponchut C, Labiche J, Bravin A (2006) Evaluation of imaging performance of a taper optics CCD 'FReLoN’ camera designed for medical imaging. J Synchrotron Radiat 13(3):260

    Article  PubMed  Google Scholar 

  12. Coan P, Mollenhauer J, Wagner A, Muehleman C, Bravin A (2008) Analyzer-based imaging technique in tomography of cartilage and metal implants: a study at the ESRF. Eur J Radiol 68(3):41

    Article  Google Scholar 

  13. Coan P, Bamberg F, Diemoz P, Bravin A, Timpert K, Mützel E, Raya J, Adam-Neumair S, Reiser M, Glaser C (2010) Characterization of osteoarthritic and normal human patella cartilage by computed tomography X-ray phase-contrast imaging: a feasibility study. Investig Radiol 45(7):437

    Google Scholar 

  14. Coan P, Wagner A, Bravin A, Diemoz P, Keyriläinen J, Mollenhauer J (2010) In vivo X-ray phase contrast analyzer-based imaging for longitudinal osteoarthritis studies in guinea pigs. Phys Med Biol 55(24):7649

    Article  PubMed  Google Scholar 

  15. Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20:273

    Google Scholar 

  16. Crema M, Roemer F, Marra M, Burstein D, Gold G, Eckstein F, Baum T, Mosher T, Carrino J, Guermazi A (2011) Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 31(1):37

    Article  PubMed  Google Scholar 

  17. Davis T, Gao D, Gureyev T, Stevenson A, Wilkins S (1995) Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature 373:595

    Article  CAS  Google Scholar 

  18. Dilmanian F, Zhong Z, Ren B, Wu X, Chapman L, Orion I, Thomlinson W (2000) Computed tomography of X-ray index of refraction using the diffraction enhanced imaging method. Phys Med Biol 45(4):933

    Article  CAS  PubMed  Google Scholar 

  19. Drucker H, Burges C, Kaufman L, Smola A, Vapnik V (1996) Support vector regression machines. Adv Neural Inf Process Syst 9:155

    Google Scholar 

  20. Eckstein F, Wirth W, Nevitt M (2012) Recent advances in osteoarthtiris imaging—the Osteoarthritis Initiative. Nat Rev Rheumatol 8:622

    Article  CAS  PubMed  Google Scholar 

  21. Eckstein F, Glaser C (2004) Measuring cartilage morphology with quantitative magnetic resonance imaging. Semin Musculoskelet Radiol 8(4):329

    Article  PubMed  Google Scholar 

  22. Fiedler S, Bravin A, Keyriläinen J, Fernández M, Suortti P, Thomlinson W, Tenhunen M, Virkkunen P, Karjalainen-Lindsberg M (2004) Imaging lobular breast carcinoma: comparison of synchrotron radiation DEI-CT technique with clinical CT. Phys Med Biol 49(2):175

    Article  CAS  PubMed  Google Scholar 

  23. Goldring M, Goldring S (2007) Osteoarthritis. J Cell Physiol 213(3):626

    Article  CAS  PubMed  Google Scholar 

  24. Grüner F, Becker S, Schramm U, Eichner T, Fuchs M, Weingartner R, Habs D, Meyer-ter Vehn J, Geissler M, Ferrario M, Serafini L, van der Geer B, Backe H, Lauth W, Reiche S (2007) Design considerations for table-top, laser-based VUV and X-ray free electron lasers. Appl Phys B 86(3):431

    Article  Google Scholar 

  25. Habs D, Hegelich M, Schreiber J, Gross M, Henig A, Kiefer D, Jung D (2008) Dense laser-driven electron sheets as relativistic mirrors for coherent production of brilliant X-ray and \(\gamma\)-ray beams. Appl Phys B 93(2–3):349

    Article  CAS  Google Scholar 

  26. Hirai T, Yamada H, Sasaki M, Hasegawa D, Morita M, Oda Y, Takaku J, Hanashima T, Nitta N, Takahashi M, Murata K (2006) Refraction contrast 11x-magnified x-ray imaging of large objects by MIRRORCLE-type table-top synchrotron. J Synchrotron Radiat 13:397

    Article  PubMed  Google Scholar 

  27. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6(2):65

    Google Scholar 

  28. Hsieh CW, Jong TL, Tiu CM (2007) Bone age estimation based on phalanx information with fuzzy constrain of carpals. Med Biol Eng Comput 45(3):283

    Article  PubMed  Google Scholar 

  29. Huber M, Nagarajan M, Leinsinger G, Eibel R, Ray L, Wismüller A (2011) Performance of topological texture features to classify fibrotic interstitial lung disease patterns. Med Phys 38(4):2035

    Article  PubMed  Google Scholar 

  30. Huber M, Lancianese S, Nagarajan M, Ikpot I, Lerner A, Wismüller A (2011) Prediction of biomechanical properties of trabecular bone in MR images with geometric features and support vector regression. IEEE Trans Biomed Eng 58(6):1820

    Article  PubMed  Google Scholar 

  31. Hunter D, Le Graverand MP, Eckstein F (2009) Radiologic markers of osteoarthritis progression. Curr Opin Rheumatol 21(2):110

    Article  PubMed  Google Scholar 

  32. Jamitzky F, Stark W, Bunk W, Thalhammer S, Raeth C, Aschenbrenner T, Morfill G, Heckl W (2000) Scaling-index method as an image processing tool in scanning-probe microscopy. Ultramicroscopy 86:241

    Article  Google Scholar 

  33. Jiang C, Pitt R, Bertram J, Aneshansley D (1999) Fractal-based image texture analysis of trabecular bone architecture. Med Biol Eng Comput 37(4):413

    Article  CAS  PubMed  Google Scholar 

  34. Maclean C, Knight K, Paulus H, Brook R, Shekelle P (1998) Costs attributable to osteoarthritis. J Rheumatol 25(11):2213

    CAS  PubMed  Google Scholar 

  35. Michielsen K, Raedt H (2001) Integral-geometry morphological image analysis. Phys Rep 347(6):461

    Article  CAS  Google Scholar 

  36. Mollenhauer J, Aurich M, Zhong Z, Muehleman C, Cole A, Hasnah M, Oltulu O, Kuettner K, Margulis A, Chapman L (2002) Diffraction-enhanced X-ray imaging of articular cartilage. Osteoarthr Cartil 10(3):163

    Article  CAS  PubMed  Google Scholar 

  37. Muehleman C, Majumdar S, Issever A, Arfelli F, Menk R, Rigon L, Heitner G, Reime B, Metge J, Wagner A, Kuettner K, Mollenhauer J (2004) X-ray detection of structural orientation in human articular cartilage. Osteoarthr Cartil 12(2):97

    Article  PubMed  Google Scholar 

  38. Nagarajan M, Huber M, Schlossbauer T, Leinsinger G, Krol A, Wismüller A (2013) Classification of small lesions in dynamic breast MRI: eliminating the need for precise lesion segmentation through spatio-temporal analysis of contrast enhancement. Mach Vis Appl 24(7):1371

    Article  Google Scholar 

  39. Nagarajan M, Coan P, Huber M, Diemoz P, Glaser C, Wismüller A (2013) Computer-aided diagnosis in phase contrast X-ray computed tomography for quantitative characterization of ex vivo human patellar cartilage. IEEE Trans Biomed Eng 60(10):2896

    Article  PubMed Central  PubMed  Google Scholar 

  40. Nagarajan M, Huber M, Schlossbauer T, Leinsinger G, Krol A, Wismüller A (2014) Classification of small lesions on dynamic breast MRI: Integrating dimension reduction and out-of-sample extension into CADx methodology. Artif Intell Med 60(1):65

    Article  PubMed Central  PubMed  Google Scholar 

  41. Nagarajan M, Coan P, Huber M, Diemoz P, Glaser C, Wismüller A (2014) Computer-aided diagnosis for phase contrast X-ray computed tomography: quantitative characterization of human patella cartilage with high-dimensional geometric features. J Digit Imaging 27(1):98

    Article  PubMed Central  PubMed  Google Scholar 

  42. Nagarajan M, Coan P, Huber M, Diemoz P, Wismüller A (2015) Integrating dimension reduction and out-of-sample extension in automated classification of ex vivo human patellar cartilage on phase contrast X-ray computed tomography. PloS One 10(2):e0117157

    Article  PubMed Central  PubMed  Google Scholar 

  43. Nava R, Escalante-Ramirez B, Cristobal G, Estepar R (2014) Extended Gabor approach applied to classification of emphysematous patterns in computed tomography. Med Biol Eng Comput 52(4):393

    Article  PubMed Central  PubMed  Google Scholar 

  44. Raeth C, Bunk W, Huber M, Morfill G, Retzlaff J, Schuecker P (2002) Analysing large scale structure: I. weighted scaling indices and constrained randomization. Mon Not Royal Astron Soc 337(2):413

    Article  Google Scholar 

  45. Raya J, Horng A, Dietrich O, Krasnokutsky S, Beltran L, Storey P, Reiser M, Recht M, Sodickson D, Glaser C (2012) Articular cartilage: in vivo diffusion-tensor imaging. Radiology 262(2):550

    Article  PubMed  Google Scholar 

  46. Reddy R, Li S, Noyszewski E, Kneeland J, Leigh J (1997) In vivo sodium multiple quantum spectroscopy of human articular cartilage. Magn Reson Med 38(2):207

    Article  CAS  PubMed  Google Scholar 

  47. Schmitt B, Zbyn S, Stelzeneder D, Jellus V, Paul D, Lauer L, Bachert P, Trattnig S (2011) Cartilage Quality Assessment by Using Glycosaminoglycan Chemical Exchange Saturation Transfer and 23 Na MR Imaging at 7 T. Radiology 260(1):257

    Article  PubMed  Google Scholar 

  48. Snigirev A, Snigireva I, Kohn V, Kuznetsov S, Schelokov I (1995) On the possibility of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev Sci Instrum 66(12):5486

    Article  CAS  Google Scholar 

  49. Stahl R, Luke A, Li X, Carballido-Gamio J, Ma C, Majumdar S, Link T (2009) T1rho, T2 and focal knee cartilage abnormalities in physically active and sedentary healthy subjects versus early OA patients: a 3.0-Tesla MRI study. Euro Radiol 19(1):132

    Article  Google Scholar 

  50. Takeda T, Momose A, Itai Y, Jin W, Hirano K (1995) Phase-contrast imaging with synchrotron X-rays for detecting cancer lesions. Acad Radiol 2(9):799

    Article  CAS  PubMed  Google Scholar 

  51. Vlachokosta A, Asvestas P, Gkrozou F, Lavasidis L, Matsopoulos G, Paschopoulos M (2013) Classification of hysteroscopical images using texture and vessel descriptors. Med Biol Eng Comput 51(5):513

    Article  Google Scholar 

  52. Wismüller A, De T, Lochmueller E, Eckstein F, Nagarajan M (2013) Introducing anisotropic minkowski functionals and quantitative anisotropy measures for local structure analysis in biomedical imaging. In: Weaver J, Molthen R (eds) Proceedings of SPIE, vol 8672. SPIE, Bellingham, vol 8672, pp 0I1–0I8

  53. Woolf A, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81:646

    PubMed Central  PubMed  Google Scholar 

  54. Wright SP (1992) Adjusted P-values for simultaneous inference. Biometrics 48(4):1005

    Article  Google Scholar 

  55. Yelin E (2003) Cost of musculoskeletal diseases: impact of work disability and functional decline. J Rheumatol 68:8

    Google Scholar 

  56. Zhao Y, Brun E, Coan P, Huang Z, Sztrókay A, Diemoz P, Liebhardt S, Mittone A, Gasilov S, Miao J, Bravin A (2012) High-resolution, low-dose phase contrast X-ray tomography for 3D diagnosis of human breast cancers. PNAS. doi:10.1073/pnas.1204460109

Download references

Acknowledgments

This research was funded in part by the National Institute of Health (NIH) Award R01-DA-034977, the Clinical and Translational Science Award 5-28527 within the Upstate New York Translational Research Network (UNYTRN) of the Clinical and Translational Science Institute (CTSI), University of Rochester, by the Center for Emerging and Innovative Sciences (CEIS), a NYSTAR-designated Center for Advanced Technology, and by the DFG Cluster of Excellence Munich—Centre for Advanced Photonics (MAP), Munich, Germany. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Health. The authors would like to thank the ESRF for providing the experimental facilities and the ESRF ID17 team for assistance in operating the facilities. The following individuals are also acknowledged for their assistance with this work Dr. Christian Glaser for his efforts in characterizing the patellar cartilage specimens and other support, Dr. Emmanuel Brun for his assistance with the data sharing process, Benjamin Mintz for his assistance in developing the annotation tool used in this study, Dr. Annie Horng for her clinical insights and assistance with preparing this manuscript, and Prof. Dr. Maximilian Reiser, FACR, FRCR of the Department of Radiology, Ludwig Maximilians University, for his continued support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh B. Nagarajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarajan, M.B., Coan, P., Huber, M.B. et al. Volumetric quantitative characterization of human patellar cartilage with topological and geometrical features on phase-contrast X-ray computed tomography. Med Biol Eng Comput 53, 1211–1220 (2015). https://doi.org/10.1007/s11517-015-1340-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1340-5

Keywords

Navigation