Skip to main content

Advertisement

Log in

Time-dependent changes in postural control in early Parkinson’s disease: what are we missing?

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Impaired postural control (PC) is an important feature of Parkinson’s disease (PD), but optimal testing protocols are yet to be established. Accelerometer-based monitors provide objective measures of PC. We characterised time-dependent changes in PC in people with PD and controls during standing, and identified outcomes most sensitive to pathology. Thirty-one controls and 26 PD patients were recruited: PC was measured with an accelerometer on the lower back for 2 minutes (mins). Preliminary analysis (autocorrelation) that showed 2 seconds (s) was the shortest duration sensitive to changes in the signal; time series analysis of a range of PC outcomes was undertaken using consecutive 2-s windows over the test. Piecewise linear regression was used to fit the time series data during the first 30 s and the subsequent 90 s of the trial. PC outcomes changed over the 2 mins, with the greatest change observed during the first 30 s after which PC stabilised. Changes in PC were reduced in PD compared to controls, and Jerk was found to be discriminative of pathology. Previous studies focusing on average performance over the duration of a test may miss time-dependent differences. Evaluation of time-dependent change may provide useful insights into PC in PD and effectiveness of intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Axivity AX3, York, UK.

  2. PAL Technologies, Glasgow, UK.

  3. BSN Medical Limited, Hull, UK.

Abbreviations

ABCs:

Activities-specific balance confidence scale

ANCOVA:

Analysis of covariance

AP:

Anteroposterior

BMI:

Body mass index

CL:

Controls

f95%, CoP:

Centre of pressure frequency below which is 95 % of power of the acceleration power spectrum

GDS:

Geriatric Depression Scale

Hz:

Hertz

LEDD:

Levodopa equivalent daily dose

MDS-UPDRS:

Movement Disorder Society version of the Unified Parkinson’s Disease Rating Scale

m :

Slope

mins:

Minutes

ML:

Mediolateral

MMSE:

Mini mental state exam

MoCA:

Montreal cognitive assessment

n :

Number

ppm:

Parts per million

PC:

Postural control

PD:

Parkinson’s disease

PIGD:

Postural instability and gait disorder

RMS:

Root mean square

s:

Seconds

SD:

Standard deviation

References

  1. Abbruzzese G, Berardelli A (2003) Sensorimotor integration in movement disorders. Mov Disord 18(3):231–240

    Article  PubMed  Google Scholar 

  2. Baston C, Mancini M, Schoneburg B, Horak F, Rocchi L (2014) Postural strategies assessed with inertial sensors in healthy and parkinsonian subjects. Gait Posture 40(1):70–75. doi:10.1016/j.gaitpost.2014.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  3. Benvenuti F, Mecacci R, Gineprari I, Bandinelli S, Benvenuti E, Ferrucci L, Baroni A, Rabuffetti M, Hallett M, Dambrosia JM (1999) Kinematic characteristics of standing disequilibrium: reliability and validity of a posturographic protocol. Arch Phys Med Rehabil 80(3):278–287

    Article  CAS  PubMed  Google Scholar 

  4. Brenton-Rule A, Bassett S, Walsh A, Rome K (2011) The evaluation of walking footwear on postural stability in healthy older adults: an exploratory study. Clin Biomech 26(8):885–887

    Article  Google Scholar 

  5. Brown LA, Cooper SA, Doan JB, Clark Dickin D, Whishaw IQ, Pellis SM, Suchowersky O (2006) Parkinsonian deficits in sensory integration for postural control: temporal response to changes in visual input. Parkinsonism Relat Disord 12(6):376–381

    Article  PubMed  Google Scholar 

  6. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  CAS  PubMed  Google Scholar 

  7. Hijmans JM, Geertzen JHB, Dijkstra PU, Postema K (2007) A systematic review of the effects of shoes and other ankle or foot appliances on balance in older people and people with peripheral nervous system disorders. Gait Posture 25(2):316–323

    Article  PubMed  Google Scholar 

  8. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17(5):427–442

    Article  CAS  PubMed  Google Scholar 

  9. Horak FB (2006) Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age and ageing 35(suppl 2):ii7–ii11

    PubMed  Google Scholar 

  10. Horak FB, Frank J, Nutt J (1996) Effects of dopamine on postural control in parkinsonian subjects: scaling, set, and tone. J Neurophysiol 75(6):2380–2396

    CAS  PubMed  Google Scholar 

  11. Horak FB, Henry SM, Shumway-Cook A (1997) Postural perturbations: new insights for treatment of balance disorders. Phys Ther 77(5):517–533

    CAS  PubMed  Google Scholar 

  12. Khoo TK, Yarnall AJ, Duncan GW, Coleman S, O’Brien JT, Brooks DJ, Barker RA, Burn DJ (2013) The spectrum of nonmotor symptoms in early Parkinson disease. Neurology 80(3):276–281

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ladha C, Jackson D, Ladha K, Olivier P (2013) Shaker table validation of OpenMovement AX3 accelerometer. In: 3rd International Conference on Ambulatory Monitoring of Physical Activity and Movement, Ahmerst, pp 69–70

  14. Lewis GN, Byblow WD (2002) Altered sensorimotor integration in Parkinson’s disease. Brain 125(9):2089–2099

    Article  PubMed  Google Scholar 

  15. Mancini M, Rocchi L, Horak FB, Chiari L (2008) Effects of Parkinson’s disease and levodopa on functional limits of stability. Clin Biomech 23(4):450–458

    Article  Google Scholar 

  16. Mancini M, Horak FB, Zampieri C, Carlson-Kuhta P, Nutt JG, Chiari L (2011) Trunk accelerometry reveals postural instability in untreated Parkinson’s disease. Parkinsonism Relat Disord 17(7):557–562

    Article  PubMed  Google Scholar 

  17. Mancini M, Carlson-Kuhta P, Zampieri C, Nutt JG, Chiari L, Horak FB (2012) Postural sway as a marker of progression in Parkinson’s disease: a pilot longitudinal study. Gait Posture 36(3):471–476. doi:10.1016/j.gaitpost.2012.04.010

  18. Mancini M, Salarian A, Carlson-Kuhta P, Zampieri C, King L, Chiari L, Horak FB, Muto T, Herzberger B, Hermsdoerfer J (2012) ISway: a sensitive, valid and reliable measure of postural control. J NeuroEng Rehabil 9(1):59

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mansfield A, Mochizuki G, Inness EL, McIlroy WE (2012) Clinical correlates of between-Limb synchronization of standing balance control and falls during inpatient stroke rehabilitation. Neurorehabil Neural Repair 26(6):627–635

    Article  PubMed  Google Scholar 

  20. Moe-Nilssen R (1998) A new method for evaluating motor control in gait under real-life environmental conditions. Part 1: the instrument. Clin Biomech 13(4):320–327

    Article  Google Scholar 

  21. Moe-Nilssen R (1998) Test-retest reliability of trunk accelerometry during standing and walking. Arch Phys Med Rehabil 79(11):1377–1385

    Article  CAS  PubMed  Google Scholar 

  22. Moe-Nilssen R, Helbostad JL (2002) Trunk accelerometry as a measure of balance control during quiet standing. Gait Posture 16(1):60–68

    Article  PubMed  Google Scholar 

  23. Moghadam M, Ashayeri H, Salavati M, Sarafzadeh J, Taghipoor KD, Saeedi A, Salehi R (2011) Reliability of center of pressure measures of postural stability in healthy older adults: effects of postural task difficulty and cognitive load. Gait Posture 33(4):651–655

    Article  PubMed  Google Scholar 

  24. Movement Disorder Society URTF, Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stern MB, Dodel R, Dubois B, Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans S, LeWitt PA, Nyenhuis D, Olanow CW, Rascol O, Schrag A, Teresi JA, van Hilten JJ, LaPelle N (2008) Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 23(15):2129–2170. doi:10.1002/mds.22340

    Article  Google Scholar 

  25. Murray HC, Elliott C, Barton SE, Murray A (2000) Do patients with ankylosing spondylitis have poorer balance than normal subjects? Rheumatology 39(5):497–500

    Article  CAS  PubMed  Google Scholar 

  26. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H (2005) The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53(4):695–699. doi:10.1111/j.1532-5415.2005.53221.x

    Article  PubMed  Google Scholar 

  27. Palmerini L, Rocchi L, Mellone S, Valzania F, Chiari L (2011) Feature selection for accelerometer-based posture analysis in Parkinson’s disease. IEEE Trans Inf Technol Biomed 15(3):481–490

    Article  PubMed  Google Scholar 

  28. Powell LE, Myers AM (1995) The activities-specific balance confidence (ABC) scale. J Gerontol A Biol Sci Med Sci 50A(1):M28–M34

    Article  CAS  PubMed  Google Scholar 

  29. Qiu F, Cole MH, Davids KW, Hennig EM, Silburn PA, Netscher H, Kerr GK (2013) Effects of textured insoles on balance in people with Parkinson’s disease. PLoS One 8(12):e83309. doi:10.1371/journal.pone.0083309

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rine RM, Schubert MC, Whitney SL, Roberts D, Redfern MS, Musolino MC, Roche JL, Steed DP, Corbin B, Lin CC, Marchetti GF, Beaumont J, Carey JP, Shepard NP, Jacobson GP, Wrisley DM, Hoffman HJ, Furman G, Slotkin J (2013) Vestibular function assessment using the NIH Toolbox. Neurology 80(11 Suppl 3):S25–S31. doi:10.1212/WNL.0b013e3182872c6a

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rocchi L, Chiari L, Horak FB (2002) Effects of deep brain stimulation and levodopa on postural sway in Parkinson’s disease. J Neurol Neurosurg Psychiatry 73(3):267–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rochester L, Nieuwboer A, Lord S (2011) Physiotherapy for Parkinson’s disease: defining evidence within a framework for intervention. NeurodegenDisManage 1(1):57–65

    Google Scholar 

  33. Ruhe A, Fejer R, Walker B (2010) The test–retest reliability of centre of pressure measures in bipedal static task conditions–A systematic review of the literature. Gait Posture 32(4):436–445

    Article  PubMed  Google Scholar 

  34. Ruhe A, Fejer R, Walker B (2013) Does postural sway change in association with manual therapeutic interventions? A review of the literature. Chiropr Man Ther 21(1):9

    Article  Google Scholar 

  35. Schmidt RA, Lee TD (2011) Motor control and learning: A behavioral emphasis, 5th edn. Human Kinetics Publishers, Champaign

  36. Schoneburg B, Mancini M, Horak F, Nutt JG (2013) Framework for understanding balance dysfunction in Parkinson’s disease. Mov Disord 28:1474–1482

  37. Schrag A, Barone P, Brown RG, Leentjens AF, McDonald WM, Starkstein S, Weintraub D, Poewe W, Rascol O, Sampaio C, Stebbins GT, Goetz CG (2007) Depression rating scales in Parkinson’s disease: critique and recommendations. Mov Disord 22(8):1077–1092. doi:10.1002/mds.21333

    Article  PubMed  PubMed Central  Google Scholar 

  38. Smets EM, Garssen B, Bonke B, De Haes JC (1995) The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J Psychosom Res 39(3):315–325

    Article  CAS  PubMed  Google Scholar 

  39. Stebbins GT, Goetz CG, Burn DJ, Jankovic J, Khoo TK, Tilley BC (2013) How to identify tremor dominant and postural instability/gait difficulty groups with the movement disorder society unified Parkinson’s disease rating scale: comparison with the unified Parkinson’s disease rating scale. Mov Disord 28(5):668–670. doi:10.1002/mds.25383

    Article  PubMed  Google Scholar 

  40. Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE (2010) Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 25(15):2649–2653. doi:10.1002/mds.23429

    Article  PubMed  Google Scholar 

  41. Whitney SL, Roche JL, Marchetti GF, Lin CC, Steed DP, Furman GR, Musolino MC, Redfern MS (2011) A comparison of accelerometry and center of pressure measures during computerized dynamic posturography: a measure of balance. Gait Posture 33(4):594–599. doi:10.1016/j.gaitpost.2011.01.015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

SDD is supported by the V-Time project, which is a European Union 7th Framework Programme (FP7) under the Health theme (FP7-278169). LR is an investigator on the V-Time project. LR, SL and AG are supported by the National Institute for Health Research (NIHR) Newcastle Biomedical Research Centre and Unit based at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University. The research was also supported by NIHR Newcastle CRF Infrastructure funding. The views expressed are those of the authors and not necessarily those of the NHS or NIHR or the Department of Health. The authors would like to thank Dr. Gordon Duncan together with Dr. Alison Yarnall for their help in patient recruitment as part of the ICICLE-PD project, and Mrs Dadirayi Mhiripiri for her assistance in data collection.

Conflict of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn Rochester.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Din, S., Godfrey, A., Coleman, S. et al. Time-dependent changes in postural control in early Parkinson’s disease: what are we missing?. Med Biol Eng Comput 54, 401–410 (2016). https://doi.org/10.1007/s11517-015-1324-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1324-5

Keywords

Navigation