Skip to main content

Advertisement

Log in

A review of ultrasound common carotid artery image and video segmentation techniques

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The determination of the wall thickness [intima–media thickness (IMT)], the delineation of the atherosclerotic carotid plaque, the measurement of the diameter in the common carotid artery (CCA), as well as the grading of its stenosis are important for the evaluation of the atherosclerosis disease. All these measurements are also considered to be significant markers for the clinical evaluation of the risk of stroke. A number of CCA segmentation techniques have been proposed in the last few years either for the segmentation of the intima–media complex (IMC), the lumen of the CCA, or for the atherosclerotic carotid plaque from ultrasound images or videos of the CCA. The present review study proposes and discusses the methods and systems introduced so far in the literature for performing automated or semi-automated segmentation in ultrasound images or videos of the CCA. These are based on edge detection, active contours, level sets, dynamic programming, local statistics, Hough transform, statistical modeling, neural networks, and an integration of the above methods. Furthermore, the performance of these systems is evaluated and discussed based on various evaluation metrics. We finally propose the best performing method that can be used for the segmentation of the IMC and the atherosclerotic carotid plaque in ultrasound images and videos. We end the present review study with a discussion of the different image and video CCA segmentation techniques, future perspectives, and further extension of these techniques to ultrasound video segmentation and wall tracking of the CCA. Future work on the segmentation of the CCA will be focused on the development of integrated segmentation systems for the complete segmentation of the CCA as well as the segmentation and motion analysis of the plaque and or the IMC from ultrasound video sequences of the CCA. These systems will improve the evaluation, follow up, and treatment of patients affected by advanced atherosclerosis disease conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdel-Dayen AR, El-Sakka MR (2004) A novel morphological-based carotid artery contour extraction. Proc Can Conf Electr Comput Eng 4:1873–1876

    Google Scholar 

  2. Abolmaesumi P, Sirouspour MR, Salcudean SE (2000) Real-time extraction of carotid artery contours from ultrasound images. Proc. IEEE Int Conf Computer Based Medical Systems, p 181–186

  3. ACAS clinical advisory (1994) Carotid endarterectomy for patients with asymptomatic internal carotid artery stenosis. Stroke 25(12):2523–2524

    Google Scholar 

  4. Ananey OM, Mellotte G, Maher V (2014) Comparison of semi-automated and manual measurements of carotid intima-media thickening. Bio Med Res Int 2014:1–4

    Google Scholar 

  5. Bartels S, Franco AR, Rundek T (2012) Carotid intima-media thickness (cIMT) and plaque from risk assessment and clinical use to genetic discoveries. Perspect Med 1(1–12):139–145

    Google Scholar 

  6. Bastida-Jumilla MC, Mechon-Lara RM, Morales-Sanchez J, Verdu-Monedero R et al (2013) Segmentation of the common carotid artery walls based on a frequency implementation of active contours. J Digit Imaging 26(1):129–139

    PubMed Central  PubMed  Google Scholar 

  7. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    CAS  PubMed  Google Scholar 

  8. Bots ML, Hoes AW, Koudstaal PJ, Hofman A, Grobbee DE (1997) Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study. Circulation 96:1432–1437

    CAS  PubMed  Google Scholar 

  9. Chalana V, Kim Y (1997) A methodology for evaluation of boundary detection algorithms on medical images. IEEE Trans Med Imag 16(5):642–652

    CAS  Google Scholar 

  10. Cheng D, Schmidt-Trucksaess A, Cheng K, Burkhardt H (2002) Using snakes to detect the intimal and adventitial layers of the common carotid artery wall in sonographic images. Comput Meth Prog Biomed 67:27–37

    Google Scholar 

  11. Cheng D-C, Schmidt-Trucksaess A, Liu C-H, Liu S-H (2010) Automated detection of the arterial walls of the common carotid artery based on dynamic B-mode signals. Sensors 10:10601–10619

    PubMed Central  PubMed  Google Scholar 

  12. Cheng J, Li H, Fenster A, Zhang X, He X, Ding M (2013) Fully automatic plaque segmentation in 3D ultrasound images. Ultrasound Med Biol 39(2):2431–2446

    PubMed  Google Scholar 

  13. Chiu B, Ukwatta E, Shavakh S, Fenster A (2013) Quantification and visualisation of carotid segmentation accuracy and precision using a 2D standardised carotid map. Phys Med Biol 58:3671–3703

    PubMed  Google Scholar 

  14. Christodoulou CI, Pattichis CS, Pantziaris M, Nicolaides AN (2003) Texture-based classification of atherosclerotic carotid plaques. IEEE Trans Med Imag 22(7):902–912

    CAS  Google Scholar 

  15. Cohen LD (1991) On active contour models and balloons. Comput Vis Graph Image Process Image Underst 53(2):211–218

    Google Scholar 

  16. Cohen I, Cohen LD, Ayache N (1992) Using deformable surfaces to segment 3-D images and inter differential structures. CVGIP Image Underst 56(2):242–263

    Google Scholar 

  17. Delsanto S, Mollinari F, Giustetto P, Liboni W, Badalamenti S, Suri JS (2007) Characterization of a completely user-independent algorithm for carotid artery segmentation in 2-D ultrasound images. IEEE Trans Instrum Meas 56(4):1265–1274

    Google Scholar 

  18. Destrempes F, Meunier J, Giroux M-F, Soulez G, Cloutier G (2009) Segmentation in ultrasound B-mode images of healthy carotid arteries using mixtures of Nakagami distributions and stochastic optimization. IEEE Trans Med Imag 28(2):215–229

    Google Scholar 

  19. Destrempes F, Meunier J, M-F Giroux, Soulez G, Cloutier G (2011) Segmentation of plaques in sequences of ultrasonic B-mode images of carotid arteries based on motion estimation and a Bayesian model. IEEE Trans Biomed Eng 58(8):2202–2211

    Google Scholar 

  20. Dutt V (1995) Statistical analysis of ultrasound echo envelope. Ph.D. dissertation, Mayo Graduate School, Rochester, MN

  21. Elatrozy T, Nicolaides AN, Tegos T, Zarka A, Griffin M, Sabetai M (1998) The Effect of B-mode ultrasonic image standardization of the echodensity of symptomatic and asymptomatic carotid bifurcation plaque. Int Angiol 17(3):179–186

    CAS  PubMed  Google Scholar 

  22. Executive Committee for the Asymptomatic Carotid Atherosclerosis study (2002) Endarterectomy for asymptomatic carotid stenosis. J Am Med Assoc 273:1421–1428

    Google Scholar 

  23. Faita F, Gemignani V, Bianchini E, Giannarelli C, Ghiadoni L, Demi M (2008) Real-time measurement system for evaluation of the carotid intima-media thickness with a robust edge operator. J Ultrasound Med 27(9):1353–1361

    PubMed  Google Scholar 

  24. Fleiss JL, Cohen J, Everitt BS (1969) Large sample standard errors of kappa and weighted kappa. Psychol Bull 72(5):323–327

    Google Scholar 

  25. Freire CMV, Ribeiro ALP, Barbosa FBL, Nogueira AI et al (2009) Comparison between automated and manual measurements of carotid intima-media thickness in clinical practice. Vasc Health Risk Manage 5:811–817

    Google Scholar 

  26. Gill JD, Ladak HM, Steinman DA, Fenster A (2000) Segmentation of ulcerated plaque: a semi-automatic method for tracking the progression of carotid atherosclerosis. World congress Med Phys Biomed Eng Chicago, IL, pp 1–4

    Google Scholar 

  27. Go AS, Mozaffarian D, Veronique LR, Benjamin EJ et al (2013) Heart disease and stroke statistics-2013 update: a report from the American Heart Association. Circulation 127:e6–e245

    PubMed  Google Scholar 

  28. Golemati S, Stoitsis J, Sifakis EM, Balkizas T, Nikita K (2007) Using the Hough transform to segment images of longitudinal and transverse sections of the carotid artery. Ultrasound Med Biol 33(12):1918–1932

    PubMed  Google Scholar 

  29. Guerrero J, Salcudean SE, McEwen JA, Masri BA, Nicolaou S (2007) Real-time vessel segmentation and tracking for ultrasound imaging applications. IEEE Trans Med Imag 26(8):1079–1090

    Google Scholar 

  30. Gutierrez M, Pilon P, Lage S, Kopel L, Carvalho R, Furuie S (2002) Automatic measurement of carotid diameter and wall thickness in ultrasound images. Comput Cardiol 29:359–362

    Google Scholar 

  31. Halenka M (1999) Noninvasive measurement of early atherosclerosis by high-resolution B-mode ultrasonography. Acta Universitatis Palackianae Olomucensis Facultatis Medicae 142:7–11

    CAS  PubMed  Google Scholar 

  32. Hamou AK, El-Sakka MR (2004) A novel segmentation technique for carotid ultrasound image. Proc Int Conf Acoust Speech Signal Process III:521–524

    Google Scholar 

  33. Haralick RM, Shanmugam K, Dinstein I (1973) Texture features for image classification. IEEE Trans Syst Man Cyb SMC 3(6):610–621

    Google Scholar 

  34. Huang C-C, Chen T, Chao T-H, Juan Y-F (2004) The investigation of the relationship between carotid intima-media thickness and vascular compliance in patients with coronary artery disease. Biomed Eng 16(1):37–42

    CAS  Google Scholar 

  35. Ilea DE, Whelan PF, Brown C, Stanton A (2009) An automatic 2D CAD algorithm for the segmentation of the IMT in ultrasound carotid artery images, Proc 31st Int Conf IEEE Eng Med Biol Soc: Engin the Future of Biomed, pp. 515–519

  36. Illea DE, Duffy C, Kavanagh L, Stanton A, Whelan PF (2013) Fully automated segmentation and tracking of the intima media thickness in ultrasound video sequences of the common carotid artery. IEEE Trans Ultrason Ferroelectr Freq Control 60(1):158–177

    Google Scholar 

  37. Järvisalo MJ, Putto-Laurila A, Jartti L, Lehtimaeki T et al (2002) Carotid artery intima-media thickness in children with type 1 diabetes. Diabetes 51(2):493–498

    PubMed  Google Scholar 

  38. Kakisis JD, Avgerinos ED, Antonopoulos CN, Giannakopoulos TG, Moulakalis K, Liapis CD (2012) The European society of vascular surgery guidelines for carotid intervention: an updated independent assessment and literature review. Eur J Vasc Endovasc Surg 44(3):238–243

    CAS  PubMed  Google Scholar 

  39. Kass M, Witkin A, Terzopoulos D (1998) Snake: active contour models. Int J Comput Vision 1:321–331

    Google Scholar 

  40. Krasinksi A, Chiu B, Spence JD, Fenster A, Parraga G (2009) Three-dimensional ultrasound quantification of intense statin treatment of carotid atherosclerosis. Ultrasound Med Biol 35(11):1763–1772

    Google Scholar 

  41. Kyriakou E, Pattichis MS, Christodoulou C, Pattichis CS, Kakkos S, Griffin M, Nicoliades AN (2005) Ultrasound imaging in the analysis of carotid plaque morphology for the assessment of stroke. In: Suri JS, Yuan C, Wilson DL, Laxminarayan S (eds) Plaque imaging: pixel to molecular level. IOS press, Amsterdam, pp 241–275

    Google Scholar 

  42. Kyriakou E, Pattichis CS, Pattichis MS, Loizou CP, Christodoulou C, Kakkos SK, Nicolaides AN (2010) A review of non-invasive ultrasound image processing methods in the analysis of carotid plaque morphology for the assessment of stroke risk. IEEE Trans Inf Techn Biomed 14(4):1027–1038

    Google Scholar 

  43. Lamont D, Parker L, White M, Unwin N et al (2000) Risk of cardiovascular disease measured by carotid intima-media thickness at age 49-51: life course study. BMJ 320(7230):273–278

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Lee J-S (1980) Digital image enhancement and noise filtering by use of local statistics. IEEE Trans Pattern Anal Mach Intell 2:165–168

    CAS  PubMed  Google Scholar 

  45. Liang Q, Wendelhag I, Wilkstrand J, Gustavsson T (2000) A multiscale dynamic programming procedure for boundary detection in ultrasonic artery images. IEEE Trans Med Imag 19(2):127–142

    CAS  Google Scholar 

  46. Loizou CP, Pattichis CS, Christodoulou CI, Istepanian RSH, Pantziaris M, Nicolaides AN (2005) Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery. IEEE Trans Ultrason Ferroelectr Freq Contr 52(10):1653–1669

    Google Scholar 

  47. Loizou CP, Pattichis CS, Pantziaris M, Tyllis T, Nicolaides AN (2006) Quantitative quality evaluation of ultrasound imaging in the carotid artery. Med Biol Eng Comput 44(5):414–426

    CAS  PubMed  Google Scholar 

  48. Loizou CP, Pattichis CS, Pantziaris M, Tyllis T, Nicolaides AN (2007) Snakes based segmentation of the common carotid artery intima media. Med Biol Eng Comput 45(1):35–49

    CAS  PubMed  Google Scholar 

  49. Loizou CP, Pattichis CS, Pantziaris M, Nicolaides AN (2007) An integrated system for the segmentation of atherosclerotic carotid plaque. IEEE Trans Inf Technol Biomed 11(6):661–667

    PubMed  Google Scholar 

  50. Loizou CP, Pattichis CS, Nicolaides AN, Pantziaris M (2009) Manual and automated media and intima thickness measurements of the common carotid artery. IEEE Trans Ultras Ferroel Freq Contr 56(5):983–994

    Google Scholar 

  51. Loizou CP, Pantziaris M, Pattichis MS, Kyriakou E, Pattichis CS (2009) Ultrasound image texture analysis of the intima and media layers of the common carotid artery and its correlation with age and gender. Comput Med Imag Graph 33(4):317–324

    CAS  Google Scholar 

  52. Loizou CP, Pantziaris M, Pattichis CS, Kyriakou E (2010) M-mode state-based identification in ultrasound videos of the common carotid artery. In: Proceeding 4th International Symposium on Communication, Control and Signal Processing, ISCCSP, Limassol, Cyprus, March 3–5, p 6

  53. Loizou CP, Murray V, Pattichis MS, Pantziaris M, Pattichis CS (2011) Multiscale Amplitude modulation-Frequency Modulation (AM-FM) texture analysis of ultrasound images of the intima and media layers of the carotid artery. IEEE Trans Inf Tech Biomed 15(2):178–188

    CAS  Google Scholar 

  54. Loizou CP, Kasparis T, Papakyriakou P, Christodoulou L, Pantziaris M, Pattichis CS (2012) Video segmentation of the common carotid artery intima media complex. IEEE 12th Int Conf Bioinf and Bioeng (BIBE), Cyprus, pp. 500–505

  55. Loizou CP, Kasparis T, Christodoulides P, Theofanous C, Pantziaris M, Kyriakou E, Pattichis CS (2012) Despeckle filtering in ultrasound video of the common carotid artery, 12th Int Conf Bioinformatics Bioengineering Proc (BIBE), Cyprus, Nov 11–13, p 4

  56. Loizou CP, Kasparis T, Spyrou C, Pantziaris M (2013) Integrated system for the complete segmentation of the carotid artery bifurcation in ultrasound images. IFIP Int Federation Inform Proc, 9th Int Conf Artific Intellig Applic & Innov (AIAI 2013) IFIP AICT 412, Cyprus, 26–28 Sept, pp. 292–301

  57. Loizou CP, Theofanous C, Pantziaris M, Kasparis T, Christodoulides P, Nicolaides AN, Pattichis CS (2013) Despeckle filtering toolbox for medical ultrasound video. Int J Monit Surveill Technol Res (IJMSTR) 4(1):61–79

    Google Scholar 

  58. Loizou CP, Petroudi S, Pattichis CS, Pantziaris M, Nicolaides AN (2014) An integrated system for the segmentation of atherosclerotic carotid plaque in ultrasound video. IEEE Trans Ultras Ferroel Freq Contr 61(1):86–101

    Google Scholar 

  59. Loizou CP, Theofanous C, Pantziaris M, Kasparis T (2014) Despeckle filtering software toolbox for ultrasound imaging of the common carotid artery. Comput Methods Prog Biomed 114:109–124

    Google Scholar 

  60. Mancini GBJ, Abbott D, Kamimura C, Yeoh E (2004) Validation of a new ultrasound method for the measurement of carotid artery intima medial thickness and plaque dimensions. Can J Cardiol 20(13):1355–1359

    PubMed  Google Scholar 

  61. Mao F, Gill J, Downey D, Fenster A (2000) Segmentation of carotid artery in ultrasound images: Method development and evaluation technique. Med Phys 27(8):1–10

    Google Scholar 

  62. Mechon-Lara RM, Bastida-Jumila MC, Morales-Sanchez J, Sancho-Gomez JL (2014) Automatic detection of the intima-media thickness in ultrasound images of the common carotid artery using neural networks. Med Biol Eng Comput 52(2):169–181

    Google Scholar 

  63. Metz C (1978) Basic principles of ROC analysis. Semin Nucl Med 8:283–298

    CAS  PubMed  Google Scholar 

  64. Mojsilovic A, Popovic M, Amodaj N, Babic R, Ostojic M (1997) Automatic segmentation of intravascular ultrasound images: a texture based approach. Ann Biomed Eng 25(6):1059–1071

    CAS  PubMed  Google Scholar 

  65. Molinari F, Zeng G, Suri JS (2010) A state of the art review on intima-media thickness (IMT) measurement and wall segmentation techniques for carotid ultrasound. Comput Method Prog Biomed 100:201–221

    Google Scholar 

  66. Molinari F, Meiburger KM, Saba L, Acharya UR, Ledda M, Nicolaides AN, Suri JS (2012) Constrained snake vs. conventional snake for carotid ultrasound automated IMT measurements on multi-center data sets. Ultrasonics 52:949–961

    PubMed  Google Scholar 

  67. Molinari F, Pattichis C, Zeng G, Saba L et al (2012) Completely automated multi-resolution edge snapper. A new technique for an accurate carotid ultrasound IMT measurement: clinical validation and benchmarking on a multi-institutional database. IEEE Trans Image Process 21:1211–1222

    PubMed  Google Scholar 

  68. Mollinari F, Zeng G, Suri JS (2010) An integrated approach to computer based automated tracings and its validation for 200 common carotid artery wall ultrasound images. J Ultras Med 29:399–418

    Google Scholar 

  69. Murillo S, Pattichis MS, Soliz P, Loizou CP, Pattichis CS (2010) Global optimization for motion estimation with applications to ultrasound videos of carotid artery plaques. SPIE Medical Imaging, San Diego, California, pp 7629–7632

    Google Scholar 

  70. Naik V, Gamad RS, Bansod PP (2013) Carotid artery segmentation in ultrasound images and measurement of intima-media thickness. Biomed Research Int 801962:1–10

    Google Scholar 

  71. Nicolaides AN, Sabetai M, Kakkos SK, Dhanjil S, Tegos T, Stevens JM (2003) The asymptomatic carotid stenosis and risk of stroke study. Int Angiol 22(3):263–272

    CAS  PubMed  Google Scholar 

  72. O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr (1999) Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. New Engl J Med 340(1):14–22

    PubMed  Google Scholar 

  73. Petroudi S, Loizou CP, Pantziaris M, Pattichis CS (2012) Segmentation of the common carotid intima-media complex in ultrasound images using active contours. IEEE Trans Biomed Eng 59(11):3060–3069

    PubMed  Google Scholar 

  74. Pignoli P, Tremoli E, Poli A, Oreste P, Poaletti R (1986) Intima plus media thickness of the arterial wall: a direct measurement with ultrasound imaging. Atherosclerosis 74(6):1399–1406

    CAS  Google Scholar 

  75. Polak JF, Pencina MJ, Meisner A, Pencina KM, Brown LS, Wolf PA, D’Agostino RB Sr (2010) Associations of carotid artery intima-media thickness (IMT) with risk factors and prevalent cardiovascular disease: comparison of mean common carotid artery IMT with maximum internal carotid artery IMT. J Ultrasound Med 29(12):1759–1768

    PubMed Central  PubMed  Google Scholar 

  76. Polak JF, Funk LC, O’Leary DH (2011) Inter-reader differences in common carotid artery intima-media thickness: Implications for cardiovascular risk assessment and vascular age determination. J Ultrasound Med 30(7):915–920

    PubMed  Google Scholar 

  77. Polak JF, Pencina MJ, Herrington D, O’Leary DH (2011) Associations of edge-detected and manual-traced common carotid intima-media thickness measurements with Framingham risk factors: the multi-ethnic study of atherosclerosis. Stroke 42(7):1912–1916

    PubMed Central  PubMed  Google Scholar 

  78. Poree J, Destrembes F, Soulez G, Cloutier G (2011) Segmentation of atherosclerotic plaque components in ultrasound B-mode images using a multiphase Bayesian Level-set. IEEE Int Ultrason Symp, p 1391-1394

  79. Rocha R, Campilho A, Silva J, Azevedo E, Santos R (2010) Segmentation of the carotid intima-media region in B-mode ultrasound images. Image Vis Comput 28(4):614–625

    Google Scholar 

  80. Rocha R, Silva J, Campilho A (2014) Automatic detection of the carotid lumen axis in B-mode Ultrasound images. Comput Methods Prog Biomed 15(3):110–118

    Google Scholar 

  81. Rosenfield GH, Fitzpatrick Lins K (1986) A coefficient of agreement as a measure of thematic classification accuracy. Photogramm Eng Remote Sens 52(2):223–227

    Google Scholar 

  82. Rossi AC, Brands PJ, Hoeks AP (2008) Automatic recognition of the common carotid artery in longitudinal ultrasound B-mode scans. Med Image Anal 12:653–665

    PubMed  Google Scholar 

  83. Rossi AC, Brands PJ, Hoeks P (2010) Automatic localization of intimal and adventitial carotid artery layers with non-invasive ultrasound: a novel algorithm providing scan quality control. Ultrasound Med Biol 36(3):467–479

    PubMed  Google Scholar 

  84. Rothwell PM, Gibson RJ, Slattery J, Warlow CP (1994) Prognostic value and reproducibility of measurements of carotid stenosis. A comparison of three methods on 1001 angiograms. European carotid surgery trialists’ collaborative group. Stroke 25:2440–2444

    CAS  PubMed  Google Scholar 

  85. Saba L, Molinari F, Meiburger KM, Piga M, Zeng G, Rajendra Achraya U, Nicolaides A, Suri JS (2012) What is the correct distance measurement metric when measuring carotid ultrasound intima-media thickness automatically? Int Angiol 31(5):483–489

    CAS  PubMed  Google Scholar 

  86. Saini K, Dewal ML, Rohit M (2010) Ultrasound imaging and image segmentation in the area of ultrasound: a review. Int J Adv Sci Technol 24:41–60

    Google Scholar 

  87. Santhiyakumari N, Madheswran M (2009) Analysis of atherosclerosis for identification of cerebrovascular and cardiovascular diseases using active contour segmentation of carotid artery. Int J Bio Med Eng Consumer Health Inform 1(2):121–125

    Google Scholar 

  88. Santhiyakumari N, Rajendran P, Madheswaran M, Suresh S (2011) Detection of the intima and media layer thickness of ultrasound common carotid artery image using efficient active contour segmentation technique”. Med Biol Eng Comput 49:1299–1310

    CAS  PubMed  Google Scholar 

  89. Santos AMF, Dos Santos RM, Castro PMAC et al (2013) A novel automatic algorithm for the segmentation of the lumen of the carotid artery in ultrasound B-mode images. Expert Sys Appl 40(6570):6579

    Google Scholar 

  90. Selzer RH, Mack WJ, Lee PL, Kwong-Fu H, Hodis HN (2001) Improved common carotid elasticity and intima-media thickness measurements from computer analysis of sequential ultrasound frames. Atherosclerosis 154(1):185–193

    CAS  PubMed  Google Scholar 

  91. Slabaugh G, Unal G, Wels M, Fang T, Rao B (2009) Statistical region based segmentation of ultrasound images. Ultrasound Med Biol 35(5):781–795

    PubMed  Google Scholar 

  92. Stein JH, Korcarz CE, Mays ME, Douglas PS et al (2005) A semiautomated ultrasound border detection program that facilitates clinical measurement of ultrasound carotid intima-media thickness. J Am Soc Echocardiogr 18(3):244–251

    PubMed  Google Scholar 

  93. Sundholm J, Gustavsson T, Sarkola T (2014) Semi-automated border detection software for the quantification of arterial lumen, intima-media and adventitia layer thickness with very-high resolution ultrasound. Atherosclerosis 234:283–287

    CAS  PubMed  Google Scholar 

  94. Suri JS, Haralick RM, Sheehan FH (2000) Greedy algorithm for error correction in automatically produced boundaries from low contrast ventriculograms. Pattern Anal Appl 3(1):39–60

    Google Scholar 

  95. Tegos T, Sabetai M, Nicolaides AN, Elatrozy TS et al (2001) Patterns of brain computed tomography infraction and carotid plaque echogenicity. J Vasc Sur 33:334–339

    CAS  Google Scholar 

  96. Touboul PJ, Prati P, Scarabin P, Adrai V et al (1992) Use of monitoring software to improve the measurement of carotid wall thickness by B-mode imaging. J Hypertens 10(Suppl. 5):S37–S41

    CAS  Google Scholar 

  97. Touboul PJ, Vicaut E, Labreuche J, Belliard JP, Cohen S, Kownator S, Pithois-Merli I (2005) Design, baseline characteristics and carotid intima-media thickness reproducibility in the PARC study. Cerebrovasc Dis 19(1):57–63

    CAS  PubMed  Google Scholar 

  98. Touboul PJ, Hernandez-Hernandez R, Kucukoglu S, Woo KS et al (2007) Carotid artery intima media thickness, plaque and Framingham cardiovascular score in Asia Africa/Middle East and Latin America: the PARC-AALA study. Int J Cardiovasc Imaging 23(5):557–567

    PubMed  Google Scholar 

  99. Udupa JK, LeBlanc VR, Zhuge Y, Imielinska C et al (2006) A framework for evaluating image segmentation algorithms. Comput Med Imag Craph 30(2):75–87

    Google Scholar 

  100. Ukwatta E, Yuan J, Buchanan D, Chiu B et al (2013) Three-dimensional segmentation of three-dimensional ultrasound carotid atherosclerosis using sparse field level sets. Med Phys 40(5):1–17

    Google Scholar 

  101. van Der Meer IM, Bots ML, Hofman A, Del Sol AI, Van Der Kuip DAM, Witteman JCM (2004) Predictive value of noninvasive measures of atherosclerosis for incident myocardial infarction: the Rotterdam Study. Circulation 109(9):1089–1094

    PubMed  Google Scholar 

  102. Wang J, Li X (2003) Guiding ziplock snakes with a priori information. IEEE Trans Image Process 12(2):176–185

    CAS  PubMed  Google Scholar 

  103. Wendelhag I, Liang Q, Gustavsson T, Wikstrand J (1997) A new automated computerized analysing system simplifies reading and reduces the variability in ultrasound measurement of intima media thickness. Stroke 28:2195–2200

    CAS  PubMed  Google Scholar 

  104. Wilhjelm JE, Gronholdt ML, Wiebe B, Jespersen SK, Hansen LK, Sillesen H (1998) Quantitative analysis of ultrasound B-mode images of carotid atherosclerotic plaque: correlation with visual classification and histological examination. IEEE Trans Med Imaging 17(6):910–922

    CAS  PubMed  Google Scholar 

  105. Williams DJ, Shah M (1992) A fast algorithm for active contour and curvature estimation. GVCIP Imag Underst 55(1):14–26

    Google Scholar 

  106. Xiao G, Brady M, Noble JA, Zhang Y (2002) Segmentation of ultrasound B-mode images with intensity inhomogeneity correction. IEEE Trans Med Imaging 21(1):48–57

    PubMed  Google Scholar 

  107. Xu C, Prince J (1997) Gradient vector flow: A new external force for snakes. IEEE Conf Comp Pattern Recogn (CVPR’97):66-71

  108. Xu X, Zhou Y, Cheng X, Song E, Li G (2012) Ultrasound intima-media segmentation using Hough transform and dual snake model. Comp Med Imag Graph 36:248–258

    Google Scholar 

  109. Yang X (2012) A review on artery wall segmentation techniques and intima-media thickness measurements for carotid ultrasound images. J Innovative Optic Health Sci 5(1):1–10

    CAS  Google Scholar 

  110. Yang X, Jin J, Xu M, Wu H, He W, Yuchi M, Ding M (2013) Ultrasound common carotid artery segmentation based on active shape model. Comput Math Methods Med 2013:3459–3468

    Google Scholar 

  111. Zahalka A, Fenster A (2001) An automated segmentation method for three-dimensional carotid ultrasound images. Phys Med Biol 46:1321–1342

    CAS  PubMed  Google Scholar 

  112. Zahnd G, Orkisz M, Sérusclat A, Moulin P, Vray D (2014) Simultaneous extraction of carotid artery intima-media interfaces in ultrasound images: assessment of wall thickness temporal variation during the cardiac cycle. Int J CARS 9(4):645–658

    Google Scholar 

  113. Zarins CK, Xu C, Glagov S (2001) Atherosclerotic enlargement of the human abdominal aorta. Atherosclerosis 155(1):157–164

    CAS  PubMed  Google Scholar 

  114. Zhang H, Fritts JE, Goldman AA (2008) Image segmentation evaluation: a survey of unsupervised methods. Coput Vis Image Underst 110:260–280

    Google Scholar 

  115. Zhang Q, Yuanyuan W, Weiqi W, Jianying M et al (2010) Automatic segmentation of calcifications in intra-vascular ultrasound images using snakes and the contourlet transform. Ultrasound Med Biol 36(1):111–129

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos P. Loizou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loizou, C.P. A review of ultrasound common carotid artery image and video segmentation techniques. Med Biol Eng Comput 52, 1073–1093 (2014). https://doi.org/10.1007/s11517-014-1203-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1203-5

Keywords

Navigation