Skip to main content

Advertisement

Log in

Brain hypothermia induced by cold spinal fluid using a torso cooling pad: theoretical analyses

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Brain hypothermia induced by a temperature reduction of the spinal fluid using a torso-cooling pad is evaluated as a cooling alternative for traumatic injury patients. A theoretical model of the human head is developed to include its tissue structures and their contribution to local heat transfer. The Pennes bioheat equation and finite element analysis are used to predict the temperature distribution in the head region. The energy balance in the cerebrospinal fluid (CSF) layer surrounding the brain during mixing of the CSF and cold spinal fluid is also formulated to predict the CSF temperature reduction. Results show that the presence of cooled CSF around the brain provides mild cooling (~1°C) to the grey matter within 3000 s (50 min) with a cooling capacity of approximately 22 W. However, large temperature variations (~3.5°C) still occur in the grey matter. This approach is more effective during ischemia because it promotes deeper cooling penetration and results in larger temperature reductions; the average grey matter temperature decreases to 35.4°C. Cooling in the white matter is limited and only occurs under ischemic conditions. The non-invasive nature of the torso-cooling pad and its ability to quickly induce hypothermia to the brain tissue are beneficial to traumatic injury patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Allers M, Boris-Möller F, Lunderquist A et al (2006) A new method of selective, rapid cooling of the brain: an experimental study. Cardiovasc Interv Rad 29:260–263

    Article  Google Scholar 

  2. Busto R, Dietrich W, Globus M et al (1989) The importance of brain temperature in cerebral ischemic injury. Stroke 20:1113–1114

    CAS  PubMed  Google Scholar 

  3. Cheng H, Shi J, Zhang L et al (2006) Epidural cooling for selective brain hypothermia in porcine model. Acta Neurochir 148:559–564

    Article  CAS  Google Scholar 

  4. Davies A (2005) Hypothermia improves outcome from traumatic brain injury. Crit Care Resusc 7:238–243

    CAS  PubMed  Google Scholar 

  5. Diao C, Zhu L, Wang H (2003) Cooling and rewarming for brain ischemia or injury: theoretical analysis. Ann Biomed Eng 31:346–353

    Article  PubMed  Google Scholar 

  6. Diao C, Zhu L (2006) Temperature distribution and blood perfusion response in rat brain during selective brain cooling. Med Phys 33:2565–2573

    Article  PubMed  Google Scholar 

  7. Dietrich W (1992) The importance of brain temperature in cerebral injury. J Neurotraum 9:S475–S485

    Google Scholar 

  8. Dietrich W, Atkins C, Bramlett H (2009) Protection in animal models of brain and spinal cord injury with mild to moderate hypothermia. J Neurotraum 26:301–312

    Article  Google Scholar 

  9. Diller K, Zhu L (2009) Hypothermia therapy for brain injury. Annu Rev Biomed Eng 11:135–162

    Article  CAS  PubMed  Google Scholar 

  10. Dohi K, Jimbo H, Abe T et al (2006) Positive selective brain cooling method: a novel, simple, and selective nasopharyngeal brain cooling method. Acta Neurochir 96:406–412

    Google Scholar 

  11. Fu E, Tummala R (2005) Neuroprotection in brain and spinal cord trauma. Curr Opin Anaesthesiol 18:181–187

    Article  PubMed  Google Scholar 

  12. Ghajar J (2000) Traumatic brain injury. Lancet 356:923–929

    Article  CAS  PubMed  Google Scholar 

  13. Goetz T, Romero-Sierra C, Ethier R et al (1988) Modeling of therapeutic dialysis of cerebrospinal fluid by epidural cooling in spinal cord injuries. J Neurotraum 5:139–150

    Article  CAS  Google Scholar 

  14. Gupta A, Al-Rawi P, Hutchinson P et al (2002) Effect of hypothermia on brain tissue oxygenation in patients with sever head injury. Br J Anaesth 88:188–192

    Article  CAS  PubMed  Google Scholar 

  15. Henderson W, Dhingra V, Chittock D et al (2003) Hypothermia in the management of traumatic brain injury: a systematic review and meta-analysis. Intensive Care Med 29:1637–1644

    Article  PubMed  Google Scholar 

  16. Hutchinson J, Ward R, Lacroix J, Hebert P, Barnes M, Bohn D, Dirks P, Doucette S, Fergusson D, Gottesman R, Joffe A, Kirpalani H, Meyer P, Morris K, Moher D, Singh R, Skippen P (2008) Hypothermia therapy after traumatic brain injury in children. New Engl J Med 358:2447–2456

    Article  Google Scholar 

  17. Incropera F, DeWitt D (1996) Fundamentals of heat and mass transfer, 4th edn. Wiley, New York

    Google Scholar 

  18. Kuluz J, Prado R, Chang J et al (1993) Selective brain cooling increases cortical cerebral blood flow in rats. Am J Physiol 265:H824–H827

    CAS  PubMed  Google Scholar 

  19. Laptook A, Shalak L, Corbett R (2001) Differences in brain temperature and cerebral blood flow during selective head versus whole-body cooling. Pediatrics 108:1103–1110

    Article  CAS  PubMed  Google Scholar 

  20. Linninger A, Tsakiris C, Zhu D et al (2005) Pulsatile cerebrospinal fluid dynamics in the human brain. IEEE Trans Biomed Eng 52:557–565

    Article  PubMed  Google Scholar 

  21. Linninger A, Xenos M, Zhu D et al (2007) Cerebrospinal fluid flow in the normal and hydrocephalic human brain. IEEE Trans Biomed Eng 54:291–302

    Article  PubMed  Google Scholar 

  22. Liu W, Qiu W, Zhang Y et al (2006) Effects of selective brain cooling in patients with severe traumatic brain injury: a preliminary study. J Int Med Res 34:58–64

    CAS  PubMed  Google Scholar 

  23. Loth F, Yardimmci M, Alperin N (2001) Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity. J Biomech Eng 123:71–79

    Article  CAS  PubMed  Google Scholar 

  24. Magnæs B (1989) Clinical studies of cranial and spinal compliance and the craniospinal flow of cerebrospinal fluid. Br J Neurosurg 3:659–668

    Article  PubMed  Google Scholar 

  25. Nelson D, Nunneley S (1998) Brain temperature and limits on transcranial cooling in humans: quantitative modeling results. Eur J Appl Physiol 78:353–359

    Article  CAS  Google Scholar 

  26. Pennes H (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1:93–122

    CAS  PubMed  Google Scholar 

  27. Polderman K (2004) Application of therapeutic hypothermia in the ICU: opportunities and pitfalls of a promising treatment modality. Part 1: indications and evidence. Intensive Care Med 30:556–575

    Article  PubMed  Google Scholar 

  28. Povolny M, Kaplan S (1993) Traumatic brain injury occurring with spinal cord injury: significance in rehabilitation. J Rehabil 59:1–8

    Google Scholar 

  29. Saunders N, Habgood M, Dziegielewska K (1999) Barrier mechanisms in the brain. Clin Exp Pharmacol Physiol 26:11–19

    Article  CAS  PubMed  Google Scholar 

  30. Schellinger D, LeBihan S, Rajan S et al (1992) MR of slow CSF flow in the spine. Am J Neuroradiol 13:1393–1403

    CAS  PubMed  Google Scholar 

  31. Smith K, Zhu L (2010) Theoretical evaluation of a simple cooling pad for inducing hypothermia in the spinal cord following traumatic injury. Med Biol Eng Comput 48:167–175

    Article  PubMed  Google Scholar 

  32. Sukstanskii A, Yablonskiy D (2004) An analytical model of temperature regulation in human head. J Therm Biol 29:583–587

    Article  PubMed  Google Scholar 

  33. Van Leeuwen G, Hand J, Lagenduk J et al (2000) Numerical modeling of temperature distributions within the neonatal head. Pediatr Res 48:331–356

    Google Scholar 

  34. Wang H, Olivero W, Lanzion G et al (2004) Rapid and selective cerebral hypothermia achieved using a cooling helmet. J Neurosurg 100:272–277

    Article  PubMed  Google Scholar 

  35. Wang Y, Zhu L (2007) Targeted brain hypothermia induced by an interstitial cooling device in human neck: theoretical analyses. Eur J Appl Physiol 101:31–40

    Article  PubMed  Google Scholar 

  36. Xu X, Tikusis P, Giesbrecht G (1999) A mathematical model for human brain cooling during cold-water near-drowning. J Appl Physiol 86:265–272

    CAS  PubMed  Google Scholar 

  37. Zenker W, Kubik S (1996) Brain cooling in humans—anatomical considerations. Anat Embryol 193:1–13

    Article  CAS  PubMed  Google Scholar 

  38. Zhu L, Diao C (2001) Theoretical simulation of temperature distribution in the brain during mild hypothermia treatment for brain injury. Med Biol Eng Comput 39:681–687

    Article  CAS  PubMed  Google Scholar 

  39. Zhu L, Rosengart A (2008) Cooling penetration into normal and injured brain via intraparenchymal brain cooling probe: theoretical analyses. Heat Transfer Eng 29:284–294

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the State of Maryland TEDCO fund, an NIGMS Initiative for Minority Student Development Grant (R25-GM55036), and Procter and Gamble. This research was performed in partial fulfillment of the requirements for the Ph.D. degree from the University of Maryland, Baltimore County by Katisha D. Smith.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, K.D., Zhu, L. Brain hypothermia induced by cold spinal fluid using a torso cooling pad: theoretical analyses. Med Biol Eng Comput 48, 783–791 (2010). https://doi.org/10.1007/s11517-010-0635-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0635-9

Keywords

Navigation