Skip to main content
Log in

MicroRNA rules: Made to be broken

  • Mini-Review
  • Published:
Frontiers in Biology

Abstract

MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression. For over a decade the deluge of research describing the biogenesis and activity of miRNAs has lead researchers to postulate rules to help make sense of the enormous amount of data produced. These rules are repeated in miRNA research papers and reviews. While these rules have been helpful one must be conscious of their limitations or risk missing future breakthroughs. Here we describe some of the most commonly stated rules, the reasoning behind their formation, their uses, and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexiou P, Maragkakis M, Papadopoulos G L, Reczko M, Hatzigeorgiou A G (2009). Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics, 25(23): 3049–3055

    Article  PubMed  CAS  Google Scholar 

  • Baek D, Villén J, Shin C, Camargo F D, Gygi S P, Bartel D P (2008). The impact of microRNAs on protein output. Nature, 455(7209): 64–71

    Article  PubMed  CAS  Google Scholar 

  • Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli A E (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell, 122(4): 553–563

    Article  PubMed  CAS  Google Scholar 

  • Bartel D P (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136(2): 215–233

    Article  PubMed  CAS  Google Scholar 

  • Bazzini A A, Lee M T, Giraldez A J (2012). Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science, 336(6078): 233–237

    Article  PubMed  CAS  Google Scholar 

  • Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E (2006). mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev, 20(14): 1885–1898

    Article  PubMed  CAS  Google Scholar 

  • Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet, 37(7): 766–770

    Article  PubMed  CAS  Google Scholar 

  • Berezikov E, van Tetering G, Verheul M, van de Belt J, van Laake L, Vos J, Verloop R, van de Wetering M, Guryev V, Takada S, van Zonneveld A J, Mano H, Plasterk R, Cuppen E (2006). Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis. Genome Res, 16(10): 1289–1298

    Article  PubMed  CAS  Google Scholar 

  • Brennecke J, Stark A, Cohen S M (2005). Not miR-ly muscular: microRNAs and muscle development. Genes Dev, 19(19): 2261–2264

    Article  PubMed  CAS  Google Scholar 

  • Carthew R W, Sontheimer E J (2009). Origins and mechanisms of miRNAs and siRNAs. Cell, 136(4): 642–655

    Article  PubMed  CAS  Google Scholar 

  • Chi S W, Zang J B, Mele A, Darnell R B (2009). Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature, 460(7254): 479–486

    PubMed  CAS  Google Scholar 

  • D’Alessio G, Riordan J F (1997) Ribonucleases: Structures and Functions. Academic Press, New York, NY

    Google Scholar 

  • Djuranovic S, Nahvi A, Green R (2012). miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science, 336(6078): 237–240

    Article  PubMed  CAS  Google Scholar 

  • Elbashir S M, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411(6836): 494–498

    Article  PubMed  CAS  Google Scholar 

  • Elefant N, Altuvia Y, Margalit H (2011). A wide repertoire of miRNA binding sites: prediction and functional implications. Bioinformatics, 27(22): 3093–3101

    Article  PubMed  CAS  Google Scholar 

  • Elkayam E, Kuhn C D, Tocilj A, Haase A D, Greene E M, Hannon G J, Joshua-Tor L (2012). The structure of human argonaute-2 in complex with miR-20a. Cell, 150(1): 100–110

    Article  PubMed  CAS  Google Scholar 

  • Friedman R C, Farh K K, Burge C B, Bartel D P (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 19(1): 92–105

    Article  PubMed  CAS  Google Scholar 

  • Giraldez A J, Mishima Y, Rihel J, Grocock R J, Van Dongen S, Inoue K, Enright A J, Schier A F (2006). Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science, 312(5770): 75–79

    Article  PubMed  CAS  Google Scholar 

  • Grimson A, Farh K K, Johnston W K, Garrett-Engele P, Lim L P, Bartel D P (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell, 27(1): 91–105

    Article  PubMed  CAS  Google Scholar 

  • Gu S, Jin L, Zhang F, Sarnow P, Kay M A (2009). Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nat Struct Mol Biol, 16(2): 144–150

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Ingolia N T, Weissman J S, Bartel D P (2010). Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 466(7308): 835–840

    Article  PubMed  CAS  Google Scholar 

  • Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp A C, Munschauer M, Ulrich A, Wardle G S, Dewell S, Zavolan M, Tuschl T (2010). Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell, 141(1): 129–141

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson D G, Hogan D J, McCullough H L, Myers J W, Herschlag D, Ferrell J E, Brown P O (2009). Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol, 7(11): e1000238

    Article  PubMed  Google Scholar 

  • Jopling C L, Yi M, Lancaster A M, Lemon S M, Sarnow P (2005). Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science, 309(5740): 1577–1581

    Article  PubMed  CAS  Google Scholar 

  • Kim V N, Han J, Siomi M C (2009). Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol, 10(2): 126–139

    Article  PubMed  CAS  Google Scholar 

  • Krol J, Krzyzosiak W J (2004). Structural aspects of microRNA biogenesis. IUBMB Life, 56(2): 95–100

    Article  PubMed  CAS  Google Scholar 

  • Krol J, Loedige I, Filipowicz W (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet, 11(9): 597–610

    PubMed  CAS  Google Scholar 

  • Krützfeldt J, Rajewsky N, Braich R, Rajeev K G, Tuschl T, Manoharan M, Stoffel M (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 438(7068): 685–689

    Article  PubMed  Google Scholar 

  • Lee R C, Feinbaum R L, Ambros V (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5): 843–854

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Vasudevan S (2013). Post-transcriptional stimulation of gene expression by microRNAs. Adv Exp Med Biol, 768: 97–126

    Article  PubMed  Google Scholar 

  • Lewis B P, Shih I H, Jones-Rhoades M W, Bartel D P, Burge C B (2003). Prediction of mammalian microRNA targets. Cell, 115(7): 787–798

    Article  PubMed  CAS  Google Scholar 

  • Lim L P, Lau N C, Weinstein E G, Abdelhakim A, Yekta S, Rhoades M W, Burge C B, Bartel D P (2003). The microRNAs of Caenorhabditis elegans. Genes Dev, 17(8): 991–1008

    Article  PubMed  CAS  Google Scholar 

  • Llave C, Xie Z, Kasschau K D, Carrington J C (2002). Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 297(5589): 2053–2056

    Article  PubMed  CAS  Google Scholar 

  • Machlin E S, Sarnow P, Sagan S M (2011). Masking the 5′ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proc Natl Acad Sci USA, 108(8): 3193–3198

    Article  PubMed  CAS  Google Scholar 

  • Mayr C, Bartel D P (2009). Widespread shortening of 3’UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell, 138(4): 673–684

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P S, Parkin R K, Kroh E M, Fritz B R, Wyman S K, Pogosova-Agadjanyan E L, Peterson A, Noteboom J, O’Briant K C, Allen A, Lin D W, Urban N, Drescher C W, Knudsen B S, Stirewalt D L, Gentleman R, Vessella R L, Nelson P S, Martin D B, Tewari M (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA, 105(30): 10513–10518

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi K, Miyoshi T, Siomi H (2010). Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Mol Genet Genomics, 284(2): 95–103

    Article  PubMed  CAS  Google Scholar 

  • Nguyen H T, Frasch M (2006). MicroRNAs in muscle differentiation: lessons from Drosophila and beyond. Curr Opin Genet Dev, 16(5): 533–539

    Article  PubMed  CAS  Google Scholar 

  • Olsen P H, Ambros V (1999). The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol, 216(2): 671–680

    Article  PubMed  CAS  Google Scholar 

  • Pasquinelli A E, McCoy A, Jiménez E, Saló E, Ruvkun G, Martindale M Q, Baguñà J (2003). Expression of the 22 nucleotide let-7 heterochronic RNA throughout the Metazoa: a role in life history evolution? Evol Dev, 5(4): 372–378

    Article  PubMed  CAS  Google Scholar 

  • Pasquinelli A E, Reinhart B J, Slack F, Martindale M Q, Kuroda M I, Maller B, Hayward D C, Ball E E, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408(6808): 86–89

    Article  PubMed  CAS  Google Scholar 

  • Rehwinkel J, Behm-Ansmant I, Gatfield D, Izaurralde E (2005). A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA, 11(11): 1640–1647

    Article  PubMed  CAS  Google Scholar 

  • Reinhart B J, Slack F J, Basson M, Pasquinelli A E, Bettinger J C, Rougvie A E, Horvitz H R, Ruvkun G (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403(6772): 901–906

    Article  PubMed  CAS  Google Scholar 

  • Roush S, Slack F J (2008). The let-7 family of microRNAs. Trends Cell Biol, 18(10): 505–516

    Article  PubMed  CAS  Google Scholar 

  • Sandberg R, Neilson J R, Sarma A, Sharp P A, Burge C B (2008). Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science, 320(5883): 1643–1647

    Article  PubMed  CAS  Google Scholar 

  • Schirle N T, MacRae I J (2012). The crystal structure of human Argonaute2. Science, 336(6084): 1037–1040

    Article  PubMed  CAS  Google Scholar 

  • Schnall-Levin M, Rissland O S, Johnston W K, Perrimon N, Bartel D P, Berger B (2011). Unusually effective microRNA targeting within repeat-rich coding regions of mammalian mRNAs. Genome Res, 21(9): 1395–1403

    Article  PubMed  CAS  Google Scholar 

  • Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008). Widespread changes in protein synthesis induced by microRNAs. Nature, 455(7209): 58–63

    Article  PubMed  CAS  Google Scholar 

  • Shin C, Nam J W, Farh K K, Chiang H R, Shkumatava A, Bartel D P (2010). Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell, 38(6): 789–802

    Article  PubMed  CAS  Google Scholar 

  • Sokol N S, Ambros V (2005). Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev, 19(19): 2343–2354

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Gao B, Zhou M, Wang Z Z, Zhang F, Deng J E, Li X (2013). Comparative genomic analysis reveals evolutionary characteristics and patterns of microRNA clusters in vertebrates. Gene, 512(2): 383–391

    Article  PubMed  CAS  Google Scholar 

  • Tsui N B, Ng E K, Lo Y M (2002). Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem, 48(10): 1647–1653

    PubMed  CAS  Google Scholar 

  • Wang Y, Sheng G, Juranek S, Tuschl T, Patel D J (2008). Structure of the guide-strand-containing argonaute silencing complex. Nature, 456(7219): 209–213

    Article  PubMed  CAS  Google Scholar 

  • Weber J A, Baxter D H, Zhang S, Huang D Y, Huang K H, Lee M J, Galas D J, Wang K (2010). The microRNA spectrum in 12 body fluids. Clin Chem, 56(11): 1733–1741

    Article  PubMed  CAS  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75(5): 855–862

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Fan J, Belasco J G (2006). MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA, 103(11): 4034–4039

    Article  PubMed  CAS  Google Scholar 

  • Yang J S, Lai E C (2011). Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell, 43(6): 892–903

    Article  PubMed  CAS  Google Scholar 

  • Yekta S, Shih I H, Bartel D P (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science, 304(5670): 594–596

    Article  PubMed  CAS  Google Scholar 

  • Zamore P D, Tuschl T, Sharp P A, Bartel D P (2000). RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 101(1): 25–33

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Wang Y Q, Su B (2008). Molecular evolution of a primate-specific microRNA family. Mol Biol Evol, 25(7): 1493–1502

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Shannon Pendergrast or Tom Volpe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pendergrast, P.S., Volpe, T. MicroRNA rules: Made to be broken. Front. Biol. 8, 468–474 (2013). https://doi.org/10.1007/s11515-013-1273-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-013-1273-z

Keywords

Navigation