Skip to main content
Log in

Alternative splicing switching in stem cell lineages

  • Review
  • Published:
Frontiers in Biology

Abstract

The application of stem cells to regenerative medicine depends on a thorough understanding of the molecular mechanisms underlying their pluripotency. Many studies have identified key transcription factor-regulated transcriptional networks and chromatin landscapes of embryonic and a number of adult stem cells. In addition, recent publications have revealed another interesting molecular feature of stem cells—a distinct alternative splicing pattern. Thus, it is possible that both the identity and activity of stem cells are maintained by stem cell-specific mRNA isoforms, while switching to different isoforms ensures proper differentiation. In this review, we will discuss the generality of mRNA isoform switching and its interaction with other molecular mechanisms to regulate stem cell pluripotency, as well as the reprogramming process in which differentiated cells are induced to become pluripotent stem cell-like cells (iPSCs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allemand E, Batsché E, Muchardt C (2008). Splicing, transcription, and chromatin: a ménage à trois. Curr Opin Genet Dev, 18(2): 145–151

    Article  PubMed  CAS  Google Scholar 

  • Alló M, Buggiano V, Fededa J P, Petrillo E, Schor I, de la Mata M, Agirre E, Plass M, Eyras E, Elela S A, Klinck R, Chabot B, Kornblihtt A R (2009). Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat Struct Mol Biol, 16(7): 717–724

    Article  PubMed  Google Scholar 

  • Atlasi Y, Mowla S J, Ziaee S A, Gokhale P J, Andrews P W (2008). OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells. Stem Cells, 26(12): 3068–3074

    Article  PubMed  CAS  Google Scholar 

  • Azuara V, Perry P, Sauer S, Spivakov M, Jørgensen H F, John R M, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher A G (2006). Chromatin signatures of pluripotent cell lines. Nat Cell Biol, 8(5): 532–538

    Article  PubMed  CAS  Google Scholar 

  • Barash Y, Calarco J A, Gao W, Pan Q, Wang X, Shai O, Blencowe B J, Frey B J (2010). Deciphering the splicing code. Nature, 465(7294): 53–59

    Article  PubMed  CAS  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh T Y, Schones D E, Wang Z, Wei G, Chepelev I, Zhao K (2007). High-resolution profiling of histone methylations in the human genome. Cell, 129(4): 823–837

    Article  PubMed  CAS  Google Scholar 

  • Bernstein B E, Mikkelsen T S, Xie X, Kamal M, Huebert D J, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber S L, Lander E S (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125(2): 315–326

    Article  PubMed  CAS  Google Scholar 

  • Bland C S, Cooper T A (2007). Micromanaging alternative splicing during muscle differentiation. Dev Cell, 12(2): 171–172

    Article  PubMed  CAS  Google Scholar 

  • Bland C S, Wang E T, Vu A, David MP, Castle J C, Johnson J M, Burge C B, Cooper T A (2010). Global regulation of alternative splicing during myogenic differentiation. Nucleic Acids Res, 38(21): 7651–7664

    Article  PubMed  CAS  Google Scholar 

  • Boutz P L, Chawla G, Stoilov P, Black D L (2007a). MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev, 21(1): 71–84

    Article  PubMed  CAS  Google Scholar 

  • Boutz P L, Stoilov P, Li Q, Lin C H, Chawla G, Ostrow K, Shiue L, Ares M Jr, Black D L (2007b). A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev, 21(13): 1636–1652

    Article  PubMed  CAS  Google Scholar 

  • Boyer L A, Lee T I, Cole M F, Johnstone S E, Levine S S, Zucker J P, Guenther M G, Kumar R M, Murray H L, Jenner R G, Gifford D K, Melton D A, Jaenisch R, Young R A (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122(6): 947–956

    Article  PubMed  CAS  Google Scholar 

  • Boyer L A, Mathur D, Jaenisch R (2006a). Molecular control of pluripotency. Curr Opin Genet Dev, 16(5): 455–462

    Article  PubMed  CAS  Google Scholar 

  • Boyer L A, Plath K, Zeitlinger J, Brambrink T, Medeiros L A, Lee T I, Levine S S, Wernig M, Tajonar A, Ray M K, Bell G W, Otte A P, Vidal M, Gifford D K, Young R A, Jaenisch R (2006b). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature, 441(7091): 349–353

    Article  PubMed  CAS  Google Scholar 

  • Chawla G, Lin C H, Han A, Shiue L, Ares M Jr, Black D L (2009). Sam68 regulates a set of alternatively spliced exons during neurogenesis. Mol Cell Biol, 29 (1): 201–213

    Article  Google Scholar 

  • Chen X (2008). Stem cells: what can we learn from flies? Fly (Austin), 2(1): 19–28

    Google Scholar 

  • Cover T M, Thomas J A (1991). Elements of information theory, 1st Edition. New York: Wiley-Interscience

    Book  Google Scholar 

  • Das S, Jena S, Levasseur D N (2011). Alternative splicing produces nanog protein variants with different capacities for self-renewal and pluripotency in embryonic stem cells. J Biol Chem, 286(49):42690–42703

    Article  PubMed  CAS  Google Scholar 

  • Eun S H, Gan Q, Chen X (2010). Epigenetic regulation of germ cell differentiation. Curr Opin Cell Biol, 22(6): 737–743

    Article  PubMed  CAS  Google Scholar 

  • Evans M J, Kaufman M H (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819): 154–156

    Article  PubMed  CAS  Google Scholar 

  • Fuller MT, Spradling A C (2007). Male and female Drosophila germline stem cells: two versions of immortality. Science, 316(5823): 402–404

    Article  PubMed  CAS  Google Scholar 

  • Gabut M, Samavarchi-Tehrani P, Wang X, Slobodeniuc V, O’Hanlon D, Sung H K, Alvarez M, Talukder S, Pan Q, Mazzoni E O, Nedelec S, Wichterle H, Woltjen K, Hughes T R, Zandstra P W, Nagy A, Wrana J L, Blencowe B J (2011). An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell, 147(1): 132–146

    Article  PubMed  CAS  Google Scholar 

  • Gan Q, Chepelev I, Wei G, Tarayrah L, Cui K, Zhao K, Chen X (2010). Dynamic regulation of alternative splicing and chromatin structure in Drosophila gonads revealed by RNA-seq. Cell Res, 20(7): 763–783

    Article  PubMed  CAS  Google Scholar 

  • Gaspar-Maia A, Alajem A, Polesso F, Sridharan R, Mason M J, Heidersbach A, Ramalho-Santos J, McManus M T, Plath K, Meshorer E, Ramalho-Santos M (2009). Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature, 460(7257): 863–868

    PubMed  CAS  Google Scholar 

  • Guan K, Nayernia K, Maier L S, Wagner S, Dressel R, Lee J H, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G (2006). Pluripotency of spermatogonial stem cells from adult mouse testis. Nature, 440(7088): 1199–1203

    Article  PubMed  CAS  Google Scholar 

  • Guenther MG, Levine S S, Boyer L A, Jaenisch R, Young R A (2007). A chromatin landmark and transcription initiation at most promoters in human cells. Cell, 130(1): 77–88

    Article  PubMed  CAS  Google Scholar 

  • Jurica M S, Moore M J (2003). Pre-mRNA splicing: awash in a sea of proteins. Mol Cell, 12(1): 5–14

    Article  PubMed  CAS  Google Scholar 

  • Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, Baba S, Kato T, Kazuki Y, Toyokuni S, Toyoshima M, Niwa O, Oshimura M, Heike T, Nakahata T, Ishino F, Ogura A, Shinohara T (2004). Generation of pluripotent stem cells from neonatal mouse testis. Cell, 119(7): 1001–1012

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Chu J, Shen X, Wang J, Orkin S H (2008). An extended transcriptional network for pluripotency of embryonic stem cells. Cell, 132(6): 1049–1061

    Article  PubMed  CAS  Google Scholar 

  • Kunarso G, Wong K Y, Stanton L W, Lipovich L (2008). Detailed characterization of the mouse embryonic stem cell transcriptome reveals novel genes and intergenic splicing associated with pluripotency. BMC Genomics, 9(1): 155

    Article  PubMed  Google Scholar 

  • Lareau L F, Inada M, Green R E, Wengrod J C, Brenner S E (2007). Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature, 446(7138): 926–929

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Kim H K, Rho J Y, Han Y M, Kim J (2006a). The human OCT-4 isoforms differ in their ability to confer self-renewal. J Biol Chem, 281(44): 33554–33565

    Article  PubMed  CAS  Google Scholar 

  • Lee T I, Jenner R G, Boyer L A, Guenther MG, Levine S S, Kumar RM, Chevalier B, Johnstone S E, Cole M F, Isono K, Koseki H, Fuchikami T, Abe K, Murray H L, Zucker J P, Yuan B, Bell G W, Herbolsheimer E, Hannett N M, Sun K, Odom D T, Otte A P, Volkert T L, Bartel D P, Melton D A, Gifford D K, Jaenisch R, Young R A (2006b). Control of developmental regulators by Polycomb in human embryonic stem cells. Cell, 125(2): 301–313

    Article  PubMed  CAS  Google Scholar 

  • Lemischka I R, Pritsker M (2006). Alternative splicing increases complexity of stem cell transcriptome. Cell Cycle, 5(4): 347–351

    Article  PubMed  CAS  Google Scholar 

  • Loh Y H, Wu Q, Chew J L, Vega V B, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong K Y, Sung K W, Lee C W, Zhao X D, Chiu K P, Lipovich L, Kuznetsov V A, Robson P, Stanton L W, Wei C L, Ruan Y, Lim B, Ng H H (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet, 38(4): 431–440

    Article  PubMed  CAS  Google Scholar 

  • Losick V P, Morris L X, Fox D T, Spradling A (2011). Drosophila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. Dev Cell, 21(1): 159–171

    Article  PubMed  CAS  Google Scholar 

  • Luco R F, Allo M, Schor I E, Kornblihtt A R, Misteli T (2011). Epigenetics in alternative pre-mRNA splicing. Cell, 144(1): 16–26

    Article  PubMed  CAS  Google Scholar 

  • Luco R F, Misteli T (2011). More than a splicing code: integrating the role of RNA, chromatin and non-coding RNA in alternative splicing regulation. Curr Opin Genet Dev, 21(4): 366–372

    Article  PubMed  CAS  Google Scholar 

  • Luco R F, Pan Q, Tominaga K, Blencowe B J, Pereira-Smith O M, Misteli T (2010). Regulation of alternative splicing by histone modifications. Science, 327(5968): 996–1000

    Article  PubMed  CAS  Google Scholar 

  • Martin G R (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA, 78(12): 7634–7638

    Article  PubMed  CAS  Google Scholar 

  • Mayshar Y, Rom E, Chumakov I, Kronman A, Yayon A, Benvenisty N (2008). Fibroblast growth factor 4 and its novel splice isoform have opposing effects on the maintenance of human embryonic stem cell self-renewal. Stem Cells, 26(3): 767–774

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen T S, Ku M, Jaffe D B, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim T K, Koche R P, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander E S, Bernstein B E (2007). Genomewide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 448(7153): 553–560

    Article  PubMed  CAS  Google Scholar 

  • Molnár A, Georgopoulos K (1994). The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol Cell Biol, 14(12): 8292–8303

    PubMed  Google Scholar 

  • Morrison S J, Kimble J (2006). Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, 441(7097): 1068–1074

    Article  PubMed  CAS  Google Scholar 

  • Morrison S J, Spradling A C (2008). Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell, 132(4): 598–611

    Article  PubMed  CAS  Google Scholar 

  • Muñoz MJ, Pérez Santangelo MS, Paronetto MP, de la Mata M, Pelisch F, Boireau S, Glover-Cutter K, Ben-Dov C, Blaustein M, Lozano J J, Bird G, Bentley D, Bertrand E, Kornblihtt A R (2009). DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. Cell, 137(4): 708–720

    Article  PubMed  Google Scholar 

  • Nelles D A, Yeo G W (2010). Alternative splicing in stem cell selfrenewal and diferentiation. Adv Exp Med Biol, 695: 92–104

    Article  PubMed  CAS  Google Scholar 

  • Ni J Z, Grate L, Donohue J P, Preston C, Nobida N, O’Brien G, Shiue L, Clark T A, Blume J E, Ares M Jr (2007). Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev, 21(6): 708–718

    Article  PubMed  CAS  Google Scholar 

  • Park I H, Zhao R, West J A, Yabuuchi A, Huo H, Ince T A, Lerou P H, Lensch M W, Daley G Q (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175): 141–146

    Article  PubMed  CAS  Google Scholar 

  • Pritsker M, Doniger T T, Kramer L C, Westcot S E, Lemischka I R (2005). Diversification of stem cell molecular repertoire by alternative splicing. Proc Natl Acad Sci USA, 102(40): 14290–14295

    Article  PubMed  CAS  Google Scholar 

  • Rao S, Zhen S, Roumiantsev S, McDonald L T, Yuan G C, Orkin S H (2010). Differential roles of Sall4 isoforms in embryonic stem cell pluripotency. Mol Cell Biol, 30(22): 5364–5380

    Article  PubMed  CAS  Google Scholar 

  • Richard S, Torabi N, Franco G V, Tremblay G A, Chen T, Vogel G, Morel M, Cléroux P, Forget-Richard A, Komarova S, Tremblay ML, Li W, Li A, Gao Y J, Henderson J E (2005). Ablation of the Sam68 RNA binding protein protects mice from age-related bone loss. PLoS Genet, 1(6): e74

    Article  PubMed  Google Scholar 

  • Ritchie W, Granjeaud S, Puthier D, Gautheret D (2008). Entropy measures quantify global splicing disorders in cancer. PLOS Comput Biol, 4(3): e1000011

    Article  PubMed  Google Scholar 

  • Rossi D J, Jamieson C H, Weissman I L (2008). Stems cells and the pathways to aging and cancer. Cell, 132(4): 681–696

    Article  PubMed  CAS  Google Scholar 

  • Salomonis N, Nelson B, Vranizan K, Pico A R, Hanspers K, Kuchinsky A, Ta L, Mercola M, Conklin B R (2009). Alternative splicing in the differentiation of human embryonic stem cells into cardiac precursors. PLOS Comput Biol, 5(11): e1000553

    Article  PubMed  Google Scholar 

  • Salomonis N, Schlieve C R, Pereira L, Wahlquist C, Colas A, Zambon A C, Vranizan K, Spindler M J, Pico A R, Cline M S, Clark T A, Williams A, Blume J E, Samal E, Mercola M, Merrill B J, Conklin B R (2010). Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc Natl Acad Sci USA, 107(23): 10514–10519

    Article  PubMed  CAS  Google Scholar 

  • Schor I E, Rascovan N, Pelisch F, Alló M, Kornblihtt A R (2009). Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. Proc Natl Acad Sci USA, 106(11): 4325–4330

    Article  PubMed  CAS  Google Scholar 

  • Schwartz S, Ast G (2010). Chromatin density and splicing destiny: on the cross-talk between chromatin structure and splicing. EMBO J, 29(10): 1629–1636

    Article  PubMed  CAS  Google Scholar 

  • Schwartz S, Meshorer E, Ast G (2009). Chromatin organization marks exon-intron structure. Nat Struct Mol Biol, 16(9): 990–995

    Article  PubMed  CAS  Google Scholar 

  • Shibayama M, Ohno S, Osaka T, Sakamoto R, Tokunaga A, Nakatake Y, Sato M, Yoshida N (2009). Polypyrimidine tract-binding protein is essential for early mouse development and embryonic stem cell proliferation. FEBS J, 276(22): 6658–6668

    Article  PubMed  CAS  Google Scholar 

  • Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S (2011). CTCFpromoted RNA polymerase II pausing links DNA methylation to splicing. Nature, 479(7371): 74–79

    Article  PubMed  CAS  Google Scholar 

  • Sims R J 3rd, Millhouse S, Chen C F, Lewis B A, Erdjument-Bromage H, Tempst P, Manley J L, Reinberg D (2007). Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell, 28(4): 665–676

    Article  PubMed  CAS  Google Scholar 

  • Smith A G (2001). Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol, 17(1): 435–462

    Article  PubMed  CAS  Google Scholar 

  • Stock J K, Giadrossi S, Casanova M, Brookes E, Vidal M, Koseki H, Brockdorff N, Fisher A G, Pombo A (2007). Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat Cell Biol, 9(12): 1428–1435

    Article  PubMed  CAS  Google Scholar 

  • Sultan M, Schulz M H, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T, Soldatov A, Parkhomchuk D, Schmidt D, O’Keeffe S, Haas S, Vingron M, Lehrach H, Yaspo M L (2008). A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science, 321(5891): 956–960

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5): 861–872

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4): 663–676

    Article  PubMed  CAS  Google Scholar 

  • Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van BarenM J, Salzberg S L, Wold B J, Pachter L (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 28(5): 511–515

    Article  PubMed  CAS  Google Scholar 

  • Wahl M C, Will C L, Lührmann R (2009). The spliceosome: design principles of a dynamic RNP machine. Cell, 136(4): 701–718

    Article  PubMed  CAS  Google Scholar 

  • Wang E T, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore S F, Schroth G P, Burge C B (2008). Alternative isoform regulation in human tissue transcriptomes. Nature, 456(7221): 470–476

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Burge C B (2008). Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA, 14(5): 802–813

    Article  PubMed  CAS  Google Scholar 

  • Wu J Q, Habegger L, Noisa P, Szekely A, Qiu C, Hutchison S, Raha D, Egholm M, Lin H, Weissman S, Cui W, Gerstein M, Snyder M (2010). Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing. Proc Natl Acad Sci USA, 107(11): 5254–5259

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Chen X, Zhang J, Loh Y H, Low T Y, Zhang W, Zhang W, Sze S K, Lim B, Ng H H (2006). Sall4 interacts with Nanog and cooccupies Nanog genomic sites in embryonic stem cells. J Biol Chem, 281(34): 24090–24094

    Article  PubMed  CAS  Google Scholar 

  • Yamashita Y M, Yuan H, Cheng J, Hunt A J (2010). Polarity in stem cell division: asymmetric stem cell division in tissue homeostasis. Cold Spring Harb Perspect Biol, 2(1): a001313

    Article  PubMed  Google Scholar 

  • Yeo G W, Coufal N G, Liang T Y, Peng G E, Fu X D, Gage F H (2009). An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat Struct Mol Biol, 16(2): 130–137

    Article  PubMed  CAS  Google Scholar 

  • Yeo G W, Xu X, Liang T Y, Muotri A R, Carson C T, Coufal N G, Gage F H (2007). Alternative splicing events identified in human embryonic stem cells and neural progenitors. PLOS Comput Biol, 3(10): 1951–1967

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858): 1917–1920

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Zhang Z, Castle J, Sun S, Johnson J, Krainer A R, Zhang M Q (2008). Defining the regulatory network of the tissue-specific splicing factors Fox-1 and Fox-2. Genes Dev, 22(18): 2550–2563

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Chipperfield H, Melton D A, Wong W H (2007). A gene regulatory network in mouse embryonic stem cells. Proc Natl Acad Sci USA, 104(42): 16438–16443

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chepelev, I., Chen, X. Alternative splicing switching in stem cell lineages. Front. Biol. 8, 50–59 (2013). https://doi.org/10.1007/s11515-012-1198-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-012-1198-y

Keywords

Navigation