Skip to main content
Log in

Cadmium and copper uptake and accumulation by Sesbania rostrata seedling, a N-fixing annual plant: implications for the mechanism of heavy metal tolerance

  • Research Article
  • Published:
Frontiers of Biology in China

Abstract

Sesbania rostrata, an annual tropical legume, has been found to be tolerant to heavy metals, with an unknown mechanism. It is a promising candidate species for revegetation at mine tailings. In this study, sequential extractions with five buffers and strong acids were used to extract various chemical forms of cadmium and copper in S. rostrata, with or without Cd or Cu treatments, so that the mechanisms of tolerance and detoxification could be inferred. Both metals had low transition rates from roots to the aboveground of S. rostrata. The transition ratio of Cd (4.00%) was higher than that of Cu (1.46%). The proportion of NaCl extracted Cd (mostly in protein-binding forms) increased drastically in Cd treated plants from being undetectable in untreated plants. This suggests that Cd induced biochemical processes producing protein-like phytochelatins that served as a major mechanism for the high Cd tolerance of S. rostrata. The case for Cu was quite different, indicating that the mechanism for metal tolerance in S. rostrata is metal-specific. The proportion of water-insoluble Cu (e.g. oxalate and phosphate) in roots increased significantly with Cu treatment, which partially explains the tolerance of S. rostrata to Cu. However, how S. rostrata copes with the high biotic activity of inorganic salts of Cu, which increased in all parts of the plant under Cu stress, is a question for future studies. Sesbania rostrata is among the very few N-fixing plants tolerant to heavy metals. This study provides evidence for the detoxification mechanism of metals in Sesbania rostrata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archer I M, Marshman N A, Salomons W (1988). Development of a revegetation programme for copper and sulphide-bearing mine waste in the humid tropic. In: Salomons W, Forstner U, eds. Environmental management of solid waste. Overseas Typographers, Makati, 166–184

  • Baker A JM (1981). Accumulations and excluders strategies in response of plants to heavy metals. J Plant Nutrient, 3: 643–654

    Article  CAS  Google Scholar 

  • Baker A J M, McGrath S P, Sidoli C M D, Reeves R D (1994). The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resource, Conservation and Recycling, 11: 41–49

    Article  Google Scholar 

  • Bar A R, Baggie I, Sanginga N (2000). The use of Sesbania (Sesbania rostrata) and urea in lowland rice production in Sierra Leone. Agroforestry System, 48: 111–118

    Article  Google Scholar 

  • Bradshaw D (1987). Recalmation of land and ecology of ecosystem. In: William R J, Gilpin M E, Aber J D, eds. Restoration Ecology. Cambridge: Cambridge University Press, 53–74

    Google Scholar 

  • Brooks R R, Shaw S, Marfil A A (1981). The chemical form and physiological function of nickel in some Iberian Alyssum species. Physiol Planta, 51: 161–170

    Google Scholar 

  • Cho M, Chardonnens A N, Dietz K J (2003). Differential heavy metal tolerance of Arabidopsis halleri and Arabidopsis thaliana: a leaf slice test. New Phytologist, 158: 287–293

    Article  CAS  Google Scholar 

  • Cobbett C S (2000). Phytochelatin biosynthesis and function in heavy-metal detoxification. Current Opinion Plant Biol, 3: 211–216

    CAS  Google Scholar 

  • Cosio C, Martinoia E, Keller C (2004). Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol, 134: 716–725

    Article  PubMed  CAS  Google Scholar 

  • Cunningham S D, Berti RW R, Huang JW(1995). Phytoremediation of contaminated soils. Tibtech, 13: 393–397

    CAS  Google Scholar 

  • Dreyfus B, Dommergues R (1981). Nitrogen fixing nodules induced by Rhizobium on the stem of the tropical legume Sesbania rostrata. FEMS Microbiology Letters, 10: 313–317

    Article  CAS  Google Scholar 

  • Dreyfus B, Rinaudo G, Dommergues Y (1985). Observations on the use of Sesbania rostrata as green manure in paddy fields. MIRCEN J Appl Microbiol Biotechnol, 1: 11–122

    Google Scholar 

  • Dreyfus B, Garcia L, Gillis M (1988). Characterization of Azorhizobium caulinodans gen. nov. sp., a stem nodulating nitrogen fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol, 38: 89–98

    Article  CAS  Google Scholar 

  • Ederli L, Reale L, Ferranti F, Pasqualini S (2004). Responses induced by high concentration of cadmium in Phragmites australis roots. Physiol Planta, 121: 66–74

    Article  CAS  Google Scholar 

  • Gao H, Zhang Y X, Chai T Y (2001). Research advances in phytochelatins and phytochelatin synthase. Acta Bot Boreal Occident Sin, 21: 779–790 (in Chinese)

    CAS  Google Scholar 

  • Ha S B, Smith A P, Howden R, Dietrich W M, Bugg S, O’Connell M J, Goldbrough P B, Cobbett C S (1999). Phytochelatin synthase genes from Arabidopsis and the yeast Schizosacharomyces pombe. The Plant Cell, 11: 1153–1163

    Article  PubMed  CAS  Google Scholar 

  • Hall J L(2002). Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot, 366: 1–11

    Article  Google Scholar 

  • Ladha J K, Pareek R P, Becker M (1992). Stem-nodulating legume-Rhizobium symbiosis and its agronomic use in lowland rice. In: Stewart B A, ed. Advances in Soil Science, Vol.20. New York: Springer-Verlag New York Inc., 147–192

    Google Scholar 

  • Macnair M R (1993). The genetics of metal tolerance in vascular plants. New Phytol, 124: 541–559

    Article  CAS  Google Scholar 

  • Manguiat I J, Sebiano A G, Jalolon AT, Guinto D F (1987). Biofertilizer and nitrogen fixation potentials of Sesbania rostrata under flooded and nonflooded conditions as affected by inoculation and nitrogen application. The Philippine J Crop Sci, 12: 325

    Google Scholar 

  • Oven M, Page J E, Zenk M H, Kutchan T M (2002). Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max. J Biol Chem, 277: 4747–4757

    Article  PubMed  CAS  Google Scholar 

  • Pareek R P, Ladha J K, Watanabe I (1990). Estimating N2 fixation by Sesbania rostrata and S. cannabina (syn. S. aculeata) in lowland rice soil by the 15N dilution method. Biol Fertil Soils, 10: 77–88

    Google Scholar 

  • Radziah O, Shamsuddin H (1990). Growth of Sesbania rostrata on different components of Tin tailings. Pertanika, 13: 9–15

    Google Scholar 

  • Rauser W E (1995). Phytochelatins and related peptides. Plant Physiol, 109: 1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Rauser W E (1999). Structure and function of metal chelators produced by plants, the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochem Biophys, 31: 19–48

    Article  PubMed  CAS  Google Scholar 

  • Salt E E, Prince R C, Pickering J J, Raskin I (1995). Mechanisms of cadmium mobility and accumulation in India mustard. Plant Physiol, 109: 1427–1433

    PubMed  CAS  Google Scholar 

  • Sekhar C K, Kamala C T, Chary N S, Anjaneyulu Y (2003). Removal of heavy metals using a plant biomass with reference to environmental control. Int J Miner Process, 68: 37–45

    Article  Google Scholar 

  • Souza J F, Rauser W E (2003). Maize and radish sequester excess cadmium and zinc in different ways. Plant Sci, 165: 1009–1022

    Article  CAS  Google Scholar 

  • Tyler G (1989). Uptake, retention and toxicity of heavy metals in lichens. Water Air Soil Pollution, 47: 321–333

    Article  CAS  Google Scholar 

  • Vatamaniuk O K, Mari S, Lu Y P, Rea P A (1999). AtPCS1, a phytochelatin synthase from Arabidopsis: Isolation and in vitro reconstitution. Proc Natl Acad Sci USA, 96: 7110–7115

    Article  PubMed  CAS  Google Scholar 

  • Xu J L, Bao Z P, Yang J R, Liu H (1991). Chemical forms of Pb, Cd and Cu in crops. Chin J Appl Ecol, 2: 244–248 (in Chinese)

    Google Scholar 

  • Yang J R, He M C, Zha Y, Liu H, Zhang P (2000). Binding forms of Cd in the rice and wheat seeds. China Environ Sci, 20: 404–408 (in Chinese)

    CAS  Google Scholar 

  • Yang Z Y, Yuan J G, Xin G R, Chang H T, Wong M H (1997). Germination, growth and nodulation of Sesbania rostrata grown in Pb/Zn tailings. Environ Manag, 21: 1–6

    Article  CAS  Google Scholar 

  • Yang Z Y, Chen F H, Yuan J G, Wong M H (2004). Responses of Sesbania rostrata and S. cannabina to Pb, Zn, Cu and Cd toxicities. J Environ Sci, 16: 670–673

    CAS  Google Scholar 

  • Ye Z H, Yang Z Y, Chan G Y S, Wong M H (2001). Growth response of Sesbania rostrata and S. cannabina to sludge-amended lead/zinc mine tailings: a greenhouse study. Environ Int, 26: 449–455

    Article  PubMed  CAS  Google Scholar 

  • Zheng Z, Fang W, Lee H Y, Yang Z (2005). Responses of Azorhizobium caulinodans to cadmium stress. FEMS Micro Eco, 54: 455–461

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyi Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, F., Fang, W., Yang, Z. et al. Cadmium and copper uptake and accumulation by Sesbania rostrata seedling, a N-fixing annual plant: implications for the mechanism of heavy metal tolerance. Front. Biol. China 4, 200–206 (2009). https://doi.org/10.1007/s11515-009-0008-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-009-0008-7

Keywords

Navigation