Skip to main content
Log in

Uniform exponential stability of the Ekman spiral

  • Published:
Arkiv för Matematik

Abstract

This paper studies stability of the Ekman boundary layer. We utilize a new approach, developed by the authors in a precedent paper, based on Fourier transformed finite vector Radon measures, which yields exponential stability of the Ekman spiral. By this method we can also derive very explicit bounds for solutions of the linearized and the nonlinear Ekman systems. For example, we can prove these bounds to be uniform with respect to the angular velocity of rotation, which has proved to be relevant for several aspects. Another advantage of this approach is that we obtain well-posedness in classes containing nondecaying vector fields such as almost periodic functions. These outcomes give respect to the nature of boundary layer problems and cannot be obtained by approaches in standard function spaces such as Lebesgue, Bessel-potential, Hölder or Besov spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babin, A., Mahalov, A. and Nicolaenko, B., Regularity and integrability of 3D Euler and Navier–Stokes equations for rotating fluids, Asymptot. Anal. 15 (1997), 103–150.

    MATH  MathSciNet  Google Scholar 

  2. Babin, A., Mahalov, A. and Nicolaenko, B., Global regularity of 3D rotating Navier–Stokes equations for resonant domains, Indiana Univ. Math. J. 48 (1999), 1133–1176.

    MATH  MathSciNet  Google Scholar 

  3. Babin, A., Mahalov, A. and Nicolaenko, B., 3D Navier–Stokes and Euler equations with initial data characterized by uniformly large vorticity, Indiana Univ. Math. J. 50 (2001), 1–35.

    Article  MATH  MathSciNet  Google Scholar 

  4. Chemin, J.-Y., Desjardin, B., Gallagher, I. and Grenier, E., Ekman boundary layers in rotating fluids, ESAIM Control Optim. Calc. Var. 8 (2002), 441–466.

    Article  MATH  MathSciNet  Google Scholar 

  5. Chemin, J.-Y., Desjardin, B., Gallagher, I. and Grenier, E., Mathematical Geophysics, Oxford Univ. Press, London, 2006.

    MATH  Google Scholar 

  6. Desjardins, B., Dormy, E. and Grenier, E., Stability of mixed Ekman–Hartmann boundary layers, Nonlinearity 12 (1999), 181–199.

    Article  MATH  MathSciNet  Google Scholar 

  7. Diestel, J. and Uhl, J. J., Vector Measures, Mathematical Surveys 15, Amer. Math. Soc., Providence, RI, 1977.

    Book  Google Scholar 

  8. Ekman, V. W., On the influence of the earth’s rotation on ocean-currents, Ark. Mat. Astr. Fys. 2:11 (1905), 1–52.

    Google Scholar 

  9. Fischer, A. and Saal, J., On instability of the Ekman spiral, Discrete Contin. Dyn. Syst. Ser. S 6 (2013), 1225–1236.

    Article  MATH  MathSciNet  Google Scholar 

  10. Giga, Y., Inui, K., Mahalov, A., Matsui, S. and Saal, J., Rotating Navier–Stokes equations in a half-space with initial data nondecreasing at infinity: the Ekman boundary layer problem, Arch. Ration. Mech. Anal. 186 (2007), 177–224.

    Article  MATH  MathSciNet  Google Scholar 

  11. Giga, Y., Inui, K., Mahalov, A. and Saal, J., Global solvability of the Navier–Stokes equations in spaces based on sum-closed frequency sets, Adv. Difference Equ. 12 (2007), 721–736.

    MATH  MathSciNet  Google Scholar 

  12. Giga, Y. and Saal, J., An approach to rotating boundary layers based on vector Radon measures, J. Math. Fluid Mech. 15 (2013), 89–127.

    Article  MATH  MathSciNet  Google Scholar 

  13. Greenberg, L. and Marletta, M., The Ekman flow and related problems: spectral theory and numerical analysis, Math. Proc. Cambridge Philos. Soc. 136 (2004), 719–764.

    Article  MATH  MathSciNet  Google Scholar 

  14. Grenier, E. and Masmoudi, N., Ekman layers of rotating fluids, the case of well prepared initial data, Comm. Partial Differential Equations 22 (1997), 953–975.

    Article  MATH  MathSciNet  Google Scholar 

  15. Hess, M., Hieber, M., Mahalov, A. and Saal, J., Nonlinear stability of Ekman layers, Bull. Lond. Math. Soc. 42 (2010), 691–706.

    Article  MATH  MathSciNet  Google Scholar 

  16. Iwabuchi, T. and Takada, R., Time periodic solutions to the Navier–Stokes equations in the rotational framework, J. Evol. Equ. 12 (2012), 985–1000.

    Article  MATH  MathSciNet  Google Scholar 

  17. Koba, H., Nonlinear stability of Ekman boundary layers in rotating stratified fluids, Mem. Amer. Math. Soc. 228 (2014).

  18. Koba, H., Mahalov, A. and Yoneda, T., Global well-posedness for the rotating Navier–Stokes–Boussinesq equations with stratification effects, Adv. Math. Sci. Appl. 22 (2012), 61–90.

    MATH  MathSciNet  Google Scholar 

  19. Lee, S., Koh, Y. and Takada, R., Dispersive estimates for Navier–Stokes equations in the rotational framework, Preprint.

  20. Mahalov, A. and Nicolaenko, B., Global solubility of the three-dimensional Navier–Stokes equations with uniformly large initial vorticity, Uspekhi Mat. Nauk. 58:2 (2003), 79–110 (Russian). English transl.: Russian Math. Surveys 58 (2003), 287–318.

    Article  MathSciNet  Google Scholar 

  21. Marletta, M. and Tretter, C., Essential spectra of coupled systems of differential equations and applications in hydrodynamics, J. Differential Equations 243 (2007), 36–69.

    Article  MATH  MathSciNet  Google Scholar 

  22. Monin, A. S. and Yaglom, A. M., Statistical Fluid Mechanics: Mechanics of Turbulence, Vols. 1 and 2, MIT Press, Cambridge, MA, 1971.

    Google Scholar 

  23. Pedlosky, J., Geophysical Fluid Dynamics, 2nd ed., Springer, Berlin, 1987.

    Book  MATH  Google Scholar 

  24. Rousset, F., Stability of large Ekman boundary layers in rotating fluids, Arch. Ration. Mech. Anal. 172 (2004), 213–245.

    Article  MATH  MathSciNet  Google Scholar 

  25. Vishik, M. J. and Fursikov, A. V., Mathematical Problems of Statistical Hydromechanics, Kluwer, Dordrecht, 1988.

    Book  MATH  Google Scholar 

  26. Yoneda, T., Long-time solvability of the Navier–Stokes equations in a rotating frame with spatially almost periodic large data, Arch. Ration. Mech. Anal. 200 (2011), 225–237.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Saal.

Additional information

The work of the first author was partly supported by the Japan Society for the Promotion of Science through grant Kiban S (26220702), Kiban A (23244015) and Houga (25610025). This work was partly supported by the Japan Society for the Promotion of Science and the German Research Foundation through Japanese–German Graduate Externship and IRTG 1529.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giga, Y., Saal, J. Uniform exponential stability of the Ekman spiral. Ark Mat 53, 105–126 (2015). https://doi.org/10.1007/s11512-014-0203-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11512-014-0203-x

Keywords

Navigation