Skip to main content
Log in

Regularity of the local fractional maximal function

  • Published:
Arkiv för Matematik

Abstract

This paper studies smoothing properties of the local fractional maximal operator, which is defined in a proper subdomain of the Euclidean space. We prove new pointwise estimates for the weak gradient of the maximal function, which imply norm estimates in Sobolev spaces. An unexpected feature is that these estimates contain extra terms involving spherical and fractional maximal functions. Moreover, we construct several explicit examples, which show that our results are essentially optimal. Extensions to metric measure spaces are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aalto, D., The Discrete Maximal Function an a Doubling Metric Space [Diskreeti maksimaalifunktio tuplaavassa metrisessä avaruudessa], Licentiate Thesis, Helsinki University of Technology, Helsinki, 2008 (Finnish).

  2. Aalto, D. and Kinnunen, J., The discrete maximal operator in metric spaces, J. Anal. Math. 111 (2010), 369–390.

    Article  MATH  MathSciNet  Google Scholar 

  3. Adams, D. R., A note on Riesz potentials, Duke Math. J. 42 (1975), 765–778.

    Article  MATH  MathSciNet  Google Scholar 

  4. Adams, D. R., Lecture Notes on L p -Potential Theory, Dept. of Math., University of Umeå, Umeå, 1981.

  5. Adams, D. R. and Hedberg, L. I., Function Spaces and Potential Theory, Springer, Berlin, 1996.

    Book  Google Scholar 

  6. Aldaz, J. M. and Pérez Lázaro, J., Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities, Trans. Amer. Math. Soc. 359 (2007), 2443–2461.

    Article  MATH  MathSciNet  Google Scholar 

  7. Björn, A. and Björn, J., Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics 17, European Mathematical Society, Zürich, 2011.

    Book  MATH  Google Scholar 

  8. Björn, A., Björn, J. and Shanmugalingam, N., Quasicontinuity of Newton-Sobolev functions and density of Lipschitz functions in metric measure spaces, Houston J. Math. 34 (2008), 1197–1211.

    MATH  MathSciNet  Google Scholar 

  9. Bourgain, J., Averages in the plane over convex curves and maximal operators, J. Anal. Math. 47 (1986), 69–85.

    Article  MATH  MathSciNet  Google Scholar 

  10. Buckley, S. M., Is the maximal function of a Lipschitz function continuous? Ann. Acad. Sci. Fenn. Math. 24 (1999), 519–528.

    MathSciNet  Google Scholar 

  11. Coifman, R. R. and Weiss, G., Analyse harmonique non-commutative sur certain espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin–Heidelberg, 1971.

    MATH  Google Scholar 

  12. Edmunds, D., Kokilashvili, V. and Meskhi, A., Bounded and Compact Integral Operators, Mathematics and Its Applications 543, Kluwer, Dordrecht, 2002.

    Book  MATH  Google Scholar 

  13. Genebashvili, I., Gogatishvili, A., Kokilashvili, V. and Krbec, M., Weight Theory for Integral Transforms on Spaces of Homogeneous Type, Addison-Wesley, Reading, MA, 1998.

    MATH  Google Scholar 

  14. Gogatishvili, A., Two-weight mixed inequalities in Orlicz classes for fractional maximal functions defined on homogeneous type spaces, Proc. A. Razmadze Math. Inst. 112 (1997), 23–56.

    MathSciNet  Google Scholar 

  15. Gogatishvili, A., Fractional maximal functions in weighted Banach function spaces, Real Anal. Exchange 25 (1999/00), 291–316.

    MathSciNet  Google Scholar 

  16. Hajłasz, P., Sobolev spaces on metric-measure spaces, in Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), Contemp. Math. 338, pp. 173–218, Amer. Math. Soc., Providence, RI, 2003.

    Chapter  Google Scholar 

  17. Hajłasz, P. and Koskela, P., Sobolev met Poincaré, Mem. Amer. Math. Soc. 145:688 (2000).

  18. Hajłasz, P. and Malý, J., On approximate differentiability of the maximal function, Proc. Amer. Math. Soc. 138 (2010), 165–174.

    Article  MATH  MathSciNet  Google Scholar 

  19. Hajłasz, P. and Onninen, J., On boundedness of maximal functions in Sobolev spaces, Ann. Acad. Sci. Fenn. Math. 29 (2004), 167–176.

    MATH  MathSciNet  Google Scholar 

  20. Heikkinen, T., Kinnunen, J., Nuutinen, J. and Tuominen, H., Mapping properties of the discrete fractional maximal operator in metric measure spaces, Kyoto J. Math. 53 (2013), 693–712.

    Article  MATH  MathSciNet  Google Scholar 

  21. Heikkinen, T., Lehrbäck, J., Nuutinen, J. and Tuominen, H., Fractional maximal functions in metric measure spaces, Anal. Geom. Metr. Spaces 1 (2012), 147–162.

    Google Scholar 

  22. Heikkinen, T. and Tuominen, H., Smoothing properties of the discrete fractional maximal operator on Besov and Triebel–Lizorkin spaces, to appear in Publ. Mat.

  23. Heinonen, J. and Koskela, P., Quasiconformal maps on metric spaces with controlled geometry, Acta Math. 181 (1998), 1–61.

    Article  MATH  MathSciNet  Google Scholar 

  24. Kilpeläinen, T., Kinnunen, J. and Martio, O., Sobolev spaces with zero boundary values on metric spaces, Potential Anal. 12 (2000), 233–247.

    Article  MathSciNet  Google Scholar 

  25. Kinnunen, J., The Hardy–Littlewood maximal function of a Sobolev-function, Israel J. Math. 100 (1997), 117–124.

    Article  MATH  MathSciNet  Google Scholar 

  26. Kinnunen, J. and Lindqvist, P., The derivative of the maximal function, J. Reine Angew. Math. 503 (1998), 161–167.

    MATH  MathSciNet  Google Scholar 

  27. Kinnunen, J. and Martio, O., Hardy’s inequalities for Sobolev functions, Math. Res. Lett. 4 (1997), 489–500.

    Article  MATH  MathSciNet  Google Scholar 

  28. Kinnunen, J. and Saksman, E., Regularity of the fractional maximal function, Bull. Lond. Math. Soc. 35 (2003), 529–535.

    Article  MATH  MathSciNet  Google Scholar 

  29. Korry, S., Boundedness of Hardy–Littlewood maximal operator in the framework of Lizorkin–Triebel spaces, Rev. Mat. Complut. 15 (2002), 401–416.

    Article  MATH  MathSciNet  Google Scholar 

  30. Kruglyak, N. and Kuznetsov, E. A., Sharp integral estimates for the fractional maximal function and interpolation, Ark. Mat. 44 (2006), 309–326.

    Article  MATH  MathSciNet  Google Scholar 

  31. Kurka, O., On the variation of the Hardy–Littlewood maximal function, Preprint, 2012. arXiv:1210.0496.

  32. Lacey, M. T., Moen, K., Pérez, C. and Torres, R. H., Sharp weighted bounds for fractional integral operators, J. Funct. Anal. 259 (2010), 1073–1097.

    Article  MATH  MathSciNet  Google Scholar 

  33. Luiro, H., Continuity of the Hardy–Littlewood maximal operator in Sobolev spaces, Proc. Amer. Math. Soc. 135 (2007), 243–251.

    Article  MATH  MathSciNet  Google Scholar 

  34. Luiro, H., On the regularity of the Hardy–Littlewood maximal operator on subdomains of \(\mathbb{R}^{n}\), Proc. Edinb. Math. Soc. 53 (2010), 211–237.

    Article  MATH  MathSciNet  Google Scholar 

  35. Luiro, H., On the differentiability of directionally differentiable functions and applications, Preprint, 2012. arXiv:1208.3971.

  36. Macías, R. A. and Segovia, C., A decomposition into atoms of distributions on spaces of homogeneous type, Adv. Math. 33 (1979), 271–309.

    Article  MATH  Google Scholar 

  37. Muckenhoupt, B. and Wheeden, R. L., Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274.

    Article  MATH  MathSciNet  Google Scholar 

  38. Pérez, C. and Wheeden, R., Potential operators, maximal functions, and generalizations of A , Potential Anal. 19 (2003), 1–33.

    Article  MATH  MathSciNet  Google Scholar 

  39. Sawyer, E. T., Wheeden, R. L. and Zhao, S., Weighted norm inequalities for operators of potential type and fractional maximal functions, Potential Anal. 5 (1996), 523–580.

    Article  MATH  MathSciNet  Google Scholar 

  40. Schlag, W., A generalization of Bourgain’s circular maximal theorem, J. Amer. Math. Soc. 10 (1997), 103–122.

    Article  MATH  MathSciNet  Google Scholar 

  41. Schlag, W., L p to L q Estimates for the Circular Maximal Function, Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 1996. Also in Topics in Analysis and Applications, pp. 1–54, World Scientific, River Edge, NJ, 2000.

  42. Schlag, W. and Sogge, C., Local smoothing estimates related to the circular maximal theorem, Math. Res. Lett. 4 (1997), 1–15.

    Article  MATH  MathSciNet  Google Scholar 

  43. Shanmugalingam, N., Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoam. 16 (2000), 243–279.

    Article  MATH  MathSciNet  Google Scholar 

  44. Shanmugalingam, N., Harmonic functions on metric spaces, Illinois J. Math. 45 (2001), 1021–1050.

    MATH  MathSciNet  Google Scholar 

  45. Sogge, C., Fourier Integrals in Classical Analysis, Cambridge Tracts in Mathematics 105, Cambridge University Press, Cambridge, 1993.

    Book  MATH  Google Scholar 

  46. Stein, E. M., Maximal functions. I. Spherical means, Proc. Natl. Acad. Sci. USA 73 (1976), 2174–2175.

    Article  MATH  Google Scholar 

  47. Tanaka, H., A remark on the derivative of the one-dimensional Hardy–Littlewood maximal function, Bull. Aust. Math. Soc. 65 (2002), 253–258.

    Article  MATH  Google Scholar 

  48. Wheeden, R. L., A characterization of some weighted norm inequalities for the fractional maximal function, Studia Math. 107 (1993), 257–272.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Kinnunen.

Additional information

This work was supported by the Academy of Finland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heikkinen, T., Kinnunen, J., Korvenpää, J. et al. Regularity of the local fractional maximal function. Ark Mat 53, 127–154 (2015). https://doi.org/10.1007/s11512-014-0199-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11512-014-0199-2

Keywords

Navigation