Skip to main content
Log in

The Use of Cooling Rate to Engineer the Microstructure and Oil Binding Capacity of Wax Crystal Networks

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The effects of cooling rate during melt crystallization of rice bran wax, sunflower wax, candelilla wax and a commercial peanut butter stabilizer in peanut oil were evaluated and correlated to their oil binding capacity. Rapid cooling upon crystallization decreased crystal length, decreased network pore area fraction, increased the fractal dimension of the crystal network, and lead to an increase in the oil binding capacity. Oleogels structured using 1 % sunflower wax exhibited the highest oil binding capacity, followed by candelilla wax and rice bran wax gels. The oil binding capacity of the commercial stabilizer was the lowest, but could be improved by crystallizing the material under high cooling rates. Linear correlation analysis revealed that the network fractal dimension decreases as pore area fraction increases, which was correlated to a greater oil loss. In general, the oil binding capacity of a gel can be significantly improved if the pore area fraction is decreased below 96 %, demonstrating how the fractal dimension and pore area fraction of a gel network can be modulated to tailor oil binding capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. R. Wang, X.-Y. Liu, J. Xiong, J. Li, J. Phys. Chem. B 110, 7275 (2006)

    Article  CAS  Google Scholar 

  2. M.A. Rogers, A.G. Marangoni, Cryst. Growth Des. 8, 8 (2008)

    Google Scholar 

  3. A.G. Marangoni, D. Tang, A.P. Singh, Chem. Phys. Lett. 419, 259 (2006)

    Article  CAS  Google Scholar 

  4. M.A. Rogers, Soft Matter 4, 1147 (2008)

    Article  Google Scholar 

  5. N.K. Ojijo, I. Neeman, S. Eger, E. Shimoni, J. Sci. Food Agric. 84, 1585 (2004)

    Article  CAS  Google Scholar 

  6. S. Da Pieve, S. Calligaris, E. Co, M.C. Nicoli, A.G. Marangoni, Food Biophys. 5, 211 (2010)

    Article  Google Scholar 

  7. M.A. Rogers, A.G. Marangoni, Langmuir 25, 8556 (2009)

    Article  CAS  Google Scholar 

  8. E. Co, A.G. Marangoni, J. Am. Oil Chem. Soc. 90, 529 (2013)

    Article  CAS  Google Scholar 

  9. J.F. Toro-Vazquez, J.A. Morales-Rueda, E. Dibildox-Alvarado, M. Charó-Alonso, M. Alonzo-Macias, M.M. González-Chávez, J. Am. Oil Chem. Soc. 84, 989 (2007)

    Article  CAS  Google Scholar 

  10. J.A. Morales-Rueda, E. Dibildox-Alvarado, M.A. Charó-Alonso, R.G. Weiss, J.F. Toro-Vazquez, Eur. J. Lipid Sci. Technol. 111, 207 (2009)

    Article  CAS  Google Scholar 

  11. H.-S. Hwang, S. Kim, M. Singh, J.K. Winkler-Moser, S.X. Liu, J. Am. Oil Chem. Soc. 89, 639 (2011)

    Article  Google Scholar 

  12. D. Zulim Botega, Application of rice bran wax organogel to substitute solid fat and enhance unsaturated fat content in ice cream (Univeristy of Guelph, 2012), https://atrium.lib.uoguelph.ca/xmlui/handle/10214/3291 Accessed Jan 2015

  13. A.J. Gravelle, S. Barbut, A.G. Marangoni, Food Funct. 4, 153 (2013)

    Article  CAS  Google Scholar 

  14. A.I. Blake, E.D. Co, A.G. Marangoni, J. Am. Oil Chem. Soc. 91, 885 (2014)

    Article  CAS  Google Scholar 

  15. A. Blake, A.G. Marangoni, Food Struct. 3, 30 (2015)

    Article  Google Scholar 

  16. K.J. Aryana, A.V.A. Resurreccion, M.S. Chinnan, L.R. Beuchat, J. Food Sci. 68, 1301 (2003)

    Article  CAS  Google Scholar 

  17. MIT Non-Newtonian Fluid Dynamics Research Group, http://web.mit.edu/nnf/education/wettability/wetting.html. Accessed 7 July 2015

  18. A. Lafuma, D. Quere, Nat. Mater. 2, 457 (2003)

    Article  CAS  Google Scholar 

  19. M.S.G. Razul, C.J. MacDougall, C.B. Hanna, A.G. Marangoni, F. Peyronel, E. Papp-Szabo, D.A. Pink, Food Funct 5, 2501 (2014)

    Article  CAS  Google Scholar 

  20. A.G. Marangoni, Trends Food Sci. Technol. 13, 37 (2002)

    Article  CAS  Google Scholar 

  21. D. Tang, A.G. Marangoni, J. Am. Oil Chem. Soc. 83, 377 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support provided by the Natural Science and Engineering Research Council of Canada.

Conflict of Interests

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro G. Marangoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blake, A.I., Marangoni, A.G. The Use of Cooling Rate to Engineer the Microstructure and Oil Binding Capacity of Wax Crystal Networks. Food Biophysics 10, 456–465 (2015). https://doi.org/10.1007/s11483-015-9409-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-015-9409-0

Keywords

Navigation