Skip to main content
Log in

Formation and Functional Attributes of Canola Protein Isolate—Gum Arabic Electrostatic Complexes

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The formation of electrostatic complexes within mixtures of canola protein isolates (CPI) and gum Arabic (GA) was investigated by turbidity during an acid pH titration (7.00–1.50) as a function of mixing ratio (1:1 to 8:1 CPI: GA), and the resulting functional properties (e.g., flow behavior, solubility, foaming and emulsification) of formed complexes were studied. Complexation typically follows two pH-dependent structure forming events associated with the formation of soluble (pHc) and insoluble complexes (pHϕ1). Both pHc and pHϕ1, was found to shift to higher pHs with increasing mixing ratio until reaching a plateau at a 4:1 CPI-GA ratio. Maximum coacervation occurred at pH 4.20 at a ratio of 2:1 CPI-GA, prior to complete dissolution at pH 2.20. The coacervate phase was pseudoplastic in nature, with some evidence of elastic-like behavior associated with a weakly interconnected network or entangled polymer solution. Solubility of CPI and CPI-GA was found to be pH-dependent with minimum solubility occurring at pH 4.00 and 3.00, respectively. Foaming and emulsifying properties of CPI-GA remained unaffected relative to CPI alone, except foaming capacity which was reduced for the mixed system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V. Tolstoguzov, Food Hydrocoll. 17, 1 (2003)

    Article  CAS  Google Scholar 

  2. M.M. Murillo-Martínez, R. Pedroza-Islas, C. Lobato-Calleros, A. Martínez-Ferez, E.J. Vernon-Carter, Food Hydrocoll. 25, 577 (2011)

    Article  Google Scholar 

  3. D.J. McClements, Biotechnol. Adv. 24, 621 (2006)

    Article  CAS  Google Scholar 

  4. S.L. Turgeon, M. Beaulieu, C. Schmitt, C. Sanchez, Curr. Opin. Colloid Interface Sci. 8, 401 (2003)

    Article  CAS  Google Scholar 

  5. C.G. de Kruif, F. Weinbreck, R. de Vreis, Curr. Opin. Colloid Interface Sci. 9, 340 (2004)

    Article  Google Scholar 

  6. C. Schmitt, S.L. Turgeon, Adv. Colloid Interface Sci. 167, 63 (2011)

    Article  CAS  Google Scholar 

  7. E. Kizilay, A. Basak Kayitmazer, P.L. Dubin, Adv. Colloid Interface Sci. 167, 24 (2011)

    Article  CAS  Google Scholar 

  8. Y.J. Li, J.L. Xia, P.L. Dubin, Macromolecules 27, 7049 (1994)

    Article  CAS  Google Scholar 

  9. V. Ducel, J. Richard, P. Saulnier, Y. Popineau, F. Boury, Colloids Surf. A Physicochem. Eng. Asp. 232, 239 (2004)

    Article  CAS  Google Scholar 

  10. D. Dong, Y.F. Hua, Y.M. Chen, X.Z. Kong, C.M. Zhang, Q. Wang, J. Agric. Food Chem. 61, 3934 (2013)

    Article  CAS  Google Scholar 

  11. I. Chourpa, V. Ducel, J. Richard, P. Dubois, F. Boury, Biomacromolecules 7, 2616 (2006)

    Article  CAS  Google Scholar 

  12. F. Weinbreck, H. Nieuwenhuijse, G.W. Robijn, K. de Kruif, J. Agric. Food Chem. 52, 3550 (2004)

    Article  CAS  Google Scholar 

  13. X.Y. Wang, J.Y. Lee, Y.W. Wang, Q.R. Huang, Biomacromolecules 8, 992 (2007)

    Article  CAS  Google Scholar 

  14. A.Q. Ye, J. Flanagan, H. Singh, Biopolymers 82, 121 (2006)

    Article  CAS  Google Scholar 

  15. S. Liu, N.H. Low, M.T. Nickerson, J. Agric. Food Chem. 57, 1521 (2009)

    Article  CAS  Google Scholar 

  16. S. Liu, Y.L. Cao, S. Ghosh, D. Rousseau, N.H. Low, M.T. Nickerson, J. Agric. Food Chem. 58, 552 (2010)

    Article  CAS  Google Scholar 

  17. S. Liu, C. Elmer, N.H. Low, M.T. Nickerson, Food Res. Int. 43, 489 (2010)

    Article  CAS  Google Scholar 

  18. K.J. Klemmer, L. Waldner, A. Stone, N.H. Low, M.T. Nickerson, Food Chem. 130, 710 (2012)

    Article  CAS  Google Scholar 

  19. C. Elmer, A. Can Karaca, N.H. Low, M.T. Nickerson, Food Res. Int. 44, 1441 (2011)

    Article  CAS  Google Scholar 

  20. D.R. Klassen, C.M. Elmer, M.T. Nickerson, Food Chem. 126, 1094 (2011)

    Article  CAS  Google Scholar 

  21. M.S.E. Ortiz, M.O. Puppo, J.R. Wagner, Food Hydrocoll. 18, 1045 (2004)

    Article  Google Scholar 

  22. E. Lampart-Szczapa, in Chemical & functional properties of food proteins, ed. by Z.E. Sikorski (Technomic, Lancaster, 2001), p. 407

    Google Scholar 

  23. S. Bérot, J.P. Compoint, C. Larré, C. Malabat, J. Guéguen, J. Chromatogr. B 818, 35 (2005)

    Article  Google Scholar 

  24. Y. Dror, Y. Cohen, R. Yerushalmi-Rozen, J. Polym. Sci. Polym. Phys. 44, 3265 (2006)

    Article  CAS  Google Scholar 

  25. A.K. Stone, L. Cheung, C. Chang, M.T. Nickerson, Food Res. Int. 54, 195 (2013)

    Article  CAS  Google Scholar 

  26. Y.L. Folawiyo, R.K.O. Apenten, J. Sci. Food Agric. 70, 241 (1996)

    Article  CAS  Google Scholar 

  27. F. Weinbreck, R. de Vries, P. Schrooyen, C.G. de Kruif, Biomacromolecules 4, 293 (2003)

    Article  CAS  Google Scholar 

  28. M.T. Nickerson, A.T. Paulson, Carbohydr. Polym. 58, 15 (2004)

    Article  CAS  Google Scholar 

  29. F.N.A. Aryee, M.T. Nickerson, Food Res. Int. 48, 520 (2012)

    Article  CAS  Google Scholar 

  30. Q. Ru, Y. Wang, J. Lee, Y. Ding, Q. Huang, Carbohydr. Polym. 88, 838 (2012)

    Article  CAS  Google Scholar 

  31. D.S. Bastos, B.N. Barreto, H.K.S. Souza, M. Bastos, M.H.M. Rocha-Leão, T.C. Andrade, M.P. Gonçalves, Food Hydrocoll. 24, 709 (2010)

    Article  CAS  Google Scholar 

  32. F. Karimi, N.T. Qazvini, R. Namivandi-Zangeneh, Int. J. Biol. Macromol. 61, 101 (2013)

    Article  Google Scholar 

  33. P.M.T. Hansen, J. Hidalgo, I.A. Gould, J. Dairy Sci. 54, 830 (1971)

    Article  CAS  Google Scholar 

  34. M. Vikelouda, V. Kiosseoglou, Food Hydrocoll. 18, 21 (2004)

    Article  CAS  Google Scholar 

  35. Y.R. Xie, N.S. Hettiarachchy, J. Food Sci. 62, 1101 (1997)

    Article  CAS  Google Scholar 

  36. R.A. Ganzevles, C.M.A. Stuart, T. van Vliet, H.H.K. de Jongh, Food Hydrocoll. 20, 872 (2006)

    Article  CAS  Google Scholar 

  37. E.A. Makri, G.I. Doxatakis, Food Chem. 101, 37 (2007)

    Article  CAS  Google Scholar 

  38. X. Li, Y. Fang, S. Al-Assaf, G. Phillips, F. Jiang, J. Colloid Interface Sci. 388, 103 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by the Saskatchewan Canola Development Commission and the Saskatchewan Agriculture and Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Nickerson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stone, A.K., Teymurova, A. & Nickerson, M.T. Formation and Functional Attributes of Canola Protein Isolate—Gum Arabic Electrostatic Complexes. Food Biophysics 9, 203–212 (2014). https://doi.org/10.1007/s11483-014-9334-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-014-9334-7

Keywords

Navigation