Skip to main content
Log in

Mechanisms Responsible for Extraordinary Optical Transmission Through One-Dimensional Periodic Arrays of Infinite Sub-wavelength Slits: the Origin of Previous EOT Position Prediction Misinterpretations

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We have studied theoretically and numerically the effect of extraordinary optical transmission of light propagating through the one-dimensional periodic arrays of infinite slits with sub-wavelength dimensions. In our study, we have concentrated on mechanisms which are responsible for this effect. Within our analysis, we have attempted to draw the attention towards the origin and reasons of earlier misinterpretations concerning the spectral position of EOT prediction and the related role of surface plasmon polaritons in manifestation of the effect. Using the sequence of suitable parameter two-dimensional spaces (in terms of structure period-filling factor; thickness-wavelength; wavelength-angle), we were able to look into subtle physical mechanisms operating in the background of this extraordinary optical transmission effect. To study these effects associated with the extraordinary optical transmission, we have applied our efficient two-dimensional numerical technique based on the rigorous coupled-wave analysis. Within the thickness-wavelength parameter space, we have been able to identify and describe three distinct interaction regions, with specific behaviour. Finally, we have proposed and discussed the supporting mechanism explaining the interaction, based on the interference of resonant and non-resonant contributions at the slit openings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391(6668):667

    Article  CAS  Google Scholar 

  2. Porto JA, García-Vidal FJ, Pendry J (1999) Transmission resonances on metallic gratings with very narrow slits. Phys Rev Lett 83(14):2845

    Article  CAS  Google Scholar 

  3. Popov E, Nevière M, Enoch S, Reinisch R (2000) Theory of light transmission through subwavelength periodic hole arrays. Phys Rev B 62(23):16100

    Article  CAS  Google Scholar 

  4. García-Vidal FJ, Lezec HJ, Ebbesen TW, Martín-Moreno L (2003) Multiple paths to enhance optical transmission through a single subwavelength slit. Phys Rev Lett 90(21):213901

    Article  Google Scholar 

  5. Schröter U, Heitmann D (1998) Surface-plasmon-enhanced transmission through metallic gratings. Phys Rev B 58:15419

    Article  Google Scholar 

  6. Hibbins AP, Sambles JR, Lawrence CR (1999) Grating-coupled surface plasmons at microwave frequencies. J Appl Phys 86(4):1791

    Article  CAS  Google Scholar 

  7. Lalanne P, Hugonin JP, Astilean S, Palamaru M, Möller KD (2000) One-mode model and Airy-like formulae for one-dimensional metallic gratings. J Opt A: Pure Appl Opt 2(1):48

    Article  Google Scholar 

  8. Astilean S, Lalanne P, Palamaru M (2000) Light transmission through metallic channels much smaller than the wavelength. Opt Commun 175(4–6):265

    Article  CAS  Google Scholar 

  9. Ghaemi HF, Thio T, Grupp DE, Ebbesen TW, Lezec HJ (1998) Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B 58(11):6779

    Article  CAS  Google Scholar 

  10. Martín-Moreno L, García-Vidal FJ, Lezec HJ, Pellerin KM, Thio T, Pendry J, Ebbesen TW (2001) Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett 86(6):1114

    Article  Google Scholar 

  11. Degiron A, Lezec HJ, Barnes WL, Ebbesen TW (2002) Effects of hole depth on enhanced light transmission through subwavelength hole arrays. Appl Phys Lett 81(23):4327

    Article  CAS  Google Scholar 

  12. Gordon R, Brolo AG, McKinnon A, Rajora A, Leathem B, Kavanagh KL (2004) Strong polarization in the optical transmission through elliptical nanohole arrays. Phys Rev Lett 92: 037401

    Article  CAS  Google Scholar 

  13. Degiron A, Ebbesen TW (2005) The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures. J Opt A: Pure Appl Opt 7(2):S90

    Article  Google Scholar 

  14. Salomon L, Grillot F, Zayats AV, de Fornel F (2001) Near-field distribution of optical transmission of periodic subwavelength holes in a metal film. Phys Rev Lett 86:1110

  15. Martín-Moreno L, García-Vidal F (2004) Optical transmission through circular hole arrays in optically thick metal films. Opt Express 12(16):3619

    Article  Google Scholar 

  16. Kim TJ, Thio T, Ebbesen TW, Grupp DE, Lezec HJ (1999) Control of optical transmission through metals perforated with subwavelength hole arrays. Opt Lett 24(4):256

    Article  CAS  Google Scholar 

  17. Anishur Rahman ATM, Majewski P, Vasilev K (2012) Extraordinary optical transmission: coupling of the Wood- Rayleigh anomaly and the Fabry-Perot resonance. Opt Lett 37(10):1742

    Article  Google Scholar 

  18. Cao H, Nahata A (2004) Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures. Opt Express 12(16):3664

    Article  Google Scholar 

  19. Cao Q, Lalanne P (2002) Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys Rev Lett 88:057403

    Article  Google Scholar 

  20. Grupp DE, Lezec HJ, Thio T, Ebbesen TW (1999) Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture. Adv Mater 11(10):860

    Article  CAS  Google Scholar 

  21. Krishnan A, Thio T, Kim TJ, Lezec HJ, ET W, Wolff PA, Pendry J, Martín-Moreno L, García-Vidal FJ (2001) Evanescently coupled resonance in surface plasmon enhanced transmission. Opt Commun 200(1-6):1

    Article  CAS  Google Scholar 

  22. Grupp DE, Lezec HJ, Ebbesen TW, Pellerin KM, Thio T (2000) Crucial role of metal surface in enhanced transmission through subwavelength apertures. Appl Phys Lett 77(11):1569

    Article  CAS  Google Scholar 

  23. Sönnichsen C, Duch AC, Steininger G, Koch M, von Plessen G, Feldmann J (2000) Launching surface plasmons into nanoholes in metal films. Appl Phys Lett 76(2):140

    Article  Google Scholar 

  24. Marquier F, Greffet JJ, Collin S, Pardo F, Pelouard JL (2005) Resonant transmission through a metallic film due to coupled modes. Opt Express 13(1):70

    Article  CAS  Google Scholar 

  25. D’Aguanno G, Mattiucci N, Bloemer MJ, de Ceglia D, Vincenti MA, Alù A. (2011) Transmission resonances in plasmonic metallic gratings. J Opt Soc Am B 28(2):253

  26. Steele JM, Moran CE, Lee A, Aguirre CM, Halas NJ (2003) Metallodielectric gratings with subwavelength slots: optical properties. Phys Rev B 68:205103

    Article  Google Scholar 

  27. Garcia N, Nieto-Vesperinas M (2007) Theory of electromagnetic wave transmission through metallic gratings of subwavelength slits. J Opt A: Pure Appl Opt 9(5):490

    Article  CAS  Google Scholar 

  28. Xie Y, Zakharian AR, Moloney JV, Mansuripur M (2005) Transmission of light through a periodic array of slits in a thick metallic film. Opt Express 13(12):4485

    Article  Google Scholar 

  29. Barbara A, Quémerais P, Bustarret E, Lopez-Rios T (2002) Optical transmission through subwavelength metallic gratings. Phys Rev B 66:161403

    Article  Google Scholar 

  30. Barnes WL, Murray WA, Dintinger J, Devaux E, Ebbesen TW (2004) Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys Rev Lett 92:107401

    Article  CAS  Google Scholar 

  31. McMahon JM, Henzie J, Odom TW, Schatz GC, Gray SK (2007) Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons. Opt Express 15(26):18119

    Article  Google Scholar 

  32. Schatz GC, McMahon JM, Gray SK (2007) Tailoring the parameters of nanohole arrays in gold films for sensing applications. Proc SPIE 6641:664:103–664,103–8

    Google Scholar 

  33. Yoshida S, Suizu K, Kato E, Nakagomi Y, Ogawa Y, Kawase K (2009) A high-sensitivity terahertz sensing method using a metallic mesh with unique transmission properties. J Mol Spectrosc 256(1):146

    Article  CAS  Google Scholar 

  34. Skigin DC, Lester M (2014) Enhanced transmission via evanescent-to-propagating conversion in metallic nanoslits: role of Rayleigh anomalies. J Opt 16(4):045004

    Article  Google Scholar 

  35. Roszkiewicz A, Nasalski W (2013) Resonant transmission enhancement at one-dimensional metal gratings. J Phys B: Atom, Mol Opt Phys 46(2):025401

    Article  Google Scholar 

  36. Sarrazin M, Vigneron JP, Vigoureux JM (2003) Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes. Phys Rev B 67 :085415

    Article  Google Scholar 

  37. Ctyroky J, Kwiecien P, Richter I (2010) Fourier series-based bidirectional propagation algorithm with adaptive spatial resolution. J Lightw Technol 28(20):2969

    Article  Google Scholar 

  38. Palik ED (1998) Handbook of optical constants of solids 3. Academic, New York

    Google Scholar 

  39. Fiala J, Richter I (2015) Explanation of extraordinary transmission on 1-D and 2-D metallic gratings Proc. SPIE 9450, Photonics, Devices, and Systems VI. 501T–94,501T–9, vol 9450, p 94

  40. Ding Y, Yoon J, Javed MH, Song SH, Magnusson R (2011) Mapping surface-plasmon polaritons and cavity modes in extraordinary optical transmission. Photon J 3(3):365

    Article  Google Scholar 

  41. Søndergaard T, Bozhevolnyi SI, Beermann J, Novikov SM, Devaux E, Ebbesen TW (2012) Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders. J Opt Soc Am B 29(1):130

    Article  Google Scholar 

  42. Crouse D, Keshavareddy P (2005) Role of optical and surface plasmon modes in enhanced transmission and applications. Opt Express 13(20):7760

    Article  CAS  Google Scholar 

  43. Yoon JW, Magnusson R (2013) Fano resonance formula for lossy two-port systems. Opt Express 21 (15):17751

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by the Czech Science Foundation (project P208/12/G118) and by the Ministry of Education, Youth, and Sports (COST project MP1403-LD15075) is greatly acknowledged. P. Kwiecien is greatly acknowledged for providing the RCWA software tool.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fiala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiala, J., Richter, I. Mechanisms Responsible for Extraordinary Optical Transmission Through One-Dimensional Periodic Arrays of Infinite Sub-wavelength Slits: the Origin of Previous EOT Position Prediction Misinterpretations. Plasmonics 13, 835–844 (2018). https://doi.org/10.1007/s11468-017-0579-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0579-0

Keywords

Navigation