Skip to main content
Log in

Scattering-Suppressed Plasmonic Bends and Adapters with Gradient Refractive Index Medium

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose the designs of plasmonic bends and adapters with low scattering loss in visible region theoretically. Tens of nanometers thick gradient refractive index medium is deposited on the metallic surface, which can confine and release the surface plasmon polaritons (SPPs). When SPPs can be strongly confined the metallic surface and propagate along the corners of the plasmonics devices, the scattering loss can be dramatically suppressed. Full wave simulations based on a finite element method have been performed to validate our proposal. Compared with the same class of design, our method can be achieved only with isotropic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Raether H (1998) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin

    Google Scholar 

  2. Bhamorea JR, Gangulyb P, Kailasa SK (2016) Molecular assembly of 3-mercaptopropinonic acid and guanidine acetic acid on silver nanoparticles for selective colorimetric detection of triazophos in water and food samples. Sensors Actuators B 233:486–495

    Article  Google Scholar 

  3. Rohit JV, Kailasa SK (2014) Cyclen dithiocarbamate-functionalized silver nanoparticles as a probe for colorimetric sensing of thiram and paraquat pesticides via host–guest chemistry. J Nanopart Res 16:2585

    Article  Google Scholar 

  4. Israel DL, Berini P (2010) Amplification of long-range surface plasmons by a dipolar gain medium. Nature Photon 4:382–387

    Article  Google Scholar 

  5. Bezus EA, Doskolovich LL, Kazanskiy NL (2014) Low-scattering surface plasmon refraction with isotropic materials. Opt Express 22(11):13547–13554

    Article  CAS  Google Scholar 

  6. Bezus EA, Doskolovich LL, Kazanskiy NL (2011) Scattering suppression in plasmonic optics using a simple two-layer dielectric structure. Appl Phys Lett 98:221108

    Article  Google Scholar 

  7. Huidobro PA, Nesterov ML, Martin-Moreno L, Garcia-Vidal FJ (2010) Transformation optics for plasmonics. Nano Lett 10:1985–1990

    Article  CAS  Google Scholar 

  8. Liu Y, Zentgraf T, Bartal G, Zhang X (2010) Transformational plasmon optics. Nano Lett 10:1991–1997

    Article  CAS  Google Scholar 

  9. Huidobro PA, Nesterov ML, Martin-Moreno L, Garcia-Vidal FJ (2011) Molding the flow of surface plasmons using conformal and quasiconformal mappings. New J Phys 13:033011

    Article  Google Scholar 

  10. Kadic M, Guenneau S, Enoch S (2010) Transformational plasmonics: cloak, concentrator and rotator for SPPs. Opt Express 18(11):12027–12032

    Article  Google Scholar 

  11. Alaoui M, Rustomji K, Chang TM, Tayeb G, Sabouroux P, Quidant R, Enoch S, Guenneau S, Abdeddaim R (2016) Cyclic concentrator, carpet cloaks and fisheye lens via transformation plasmonics. J Opt 18:044023

    Article  Google Scholar 

  12. Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332:1291–1294

  13. Chen PY, Alù A (2011) Atomically thin surface cloak using graphene monolayers. ACS Nano 5(7):5855

    Article  CAS  Google Scholar 

  14. Yang R, Hao Y (2012) An accurate control of the surface wave using transformation optics. Opt Express 20(9):9341–9350

    Article  Google Scholar 

  15. Zhang JJ, Xiao SS, Wubs M, Mortensen NA (2011) Surface plasmon wave adapter designed with transformation optics. ACS Nano 5:4359–4364

    Article  CAS  Google Scholar 

  16. Zentgraf T, Liu YM, Mikkelsen MH, Valentine J, Zhang X (2011) Plasmonic Luneburg and Eaton lenses. Nat Nanotechnol 6:151–155

    Article  CAS  Google Scholar 

  17. Ehlermann J, Vu H, Mendach S (2015) Near field investigation of a plasmonic Lüneburg lens. Plasmonics 10:1513–1518

    Article  CAS  Google Scholar 

  18. Wang YK, Zhang DH, Wang J, Qin F, Li DD, Xu ZJ (2013) Design of sharp bends with transformation plasmonics. Appl Phys A Mater Sci Process 112:549–553

    Article  CAS  Google Scholar 

  19. Zhu WR, Rukhlenko ID, Premaratne M (2013) Application of zero-index metamaterials for surface plasmon guiding. Appl Phys Lett 102:011910

    Article  Google Scholar 

  20. Cheng XB, Fan B, Dobrowolski JA, Wang L, Wang ZS (2008) Gradient-index optical filter synthesis with controllable and predictable refractive index profiles. Opt Express 16(4):2315–2321

    Article  Google Scholar 

  21. Sun SL, He Q, Xiao SY, Xu Q, Li X, Zhou L (2012) Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater 11:426–431

    Article  CAS  Google Scholar 

  22. Liu LL, Li Z, Gu CQ, Xu BZ, Ning PP, Chen C, Yan J, Niu ZY, Zhao YJ (2015) Smooth bridge between guided waves and spoof surface plasmon polaritons. Opt Lett 40(8):1810–1813

    Article  Google Scholar 

  23. Devaux E, Laluet JY, Stein B, Genet C, Ebbesen TW, Weeber J-C, Dereux A (2010) Refractive micro-optical elements for surface plasmons: from classical to gradient index optics. Opt Express 18(20):20610–20619

    Article  CAS  Google Scholar 

  24. Fu YY, Xu YD, Chen HY (2015) Applications of gradient index metamaterials in waveguides. Sci Rep 5:18223

    Article  CAS  Google Scholar 

  25. Spada LL, McManus TM, Dyke A, Haq S, Zhang L, Cheng Q, Hao Y (2016) Surface wave cloak from graded refractive index nanocomposites. Sci Rep 6:29363

    Article  Google Scholar 

  26. Stein B, Laluet JY, Devaux E, Genet C, Ebbesen TW (2010) Surface plasmon mode steering and negative refraction. Phys Rev Lett 105:266804

    Article  Google Scholar 

  27. Bleckmann F, Minovich A, Frohnhaus J, Neshev DN, Linden S (2013) Manipulation of airy surface plasmon beams. Opt Lett 38(9):1443–1445

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the National Natural Science Foundation of China (11404143, 11604124), returned overseas fund of the Ministry of Education of China (1144130201150080), Fundamental Research Funds for the Central Universities (JUSRP115A15, JUSRP51628B, JUSRP51517), and the Practice Innovation Training Program Projects for the Jiangsu College students (1145210232162350).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueke Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, X., Wang, Y., Yang, G. et al. Scattering-Suppressed Plasmonic Bends and Adapters with Gradient Refractive Index Medium. Plasmonics 13, 811–814 (2018). https://doi.org/10.1007/s11468-017-0576-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0576-3

Keywords

Navigation