Skip to main content
Log in

Enhanced Nonlinear Optical Response of Resonantly Coupled Silver Nanoparticle–Organic Dye Complexes

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The influence of metal nanoparticles on linear and nonlinear optical properties of surrounding organic molecules has been widely investigated, whereas much less attention has been paid to the influence of molecules on properties of nanoparticles. Here, we employ transient absorption spectroscopy to address the nonlinear optical responses of the resonantly coupled silver nanoparticle–organic dye systems and demonstrate that silver nanoparticles covered with dye molecules show enhanced and spectrally different nonlinear extinction changes from pristine nanoparticles. We identify changes of the plasmon resonance band of nanoparticles induced by excitation of surrounding dye. We attribute these exciton–plasmon coupling effects to the excitation-induced refractive index modifications of the dye layer surrounding a nanoparticle and to the back-transfer of the oscillator strength borrowed by the dye from the nanoparticle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhao J, Jensen L, Sung J, Zou S, Schatz GC, Van Duyne RP (2007) Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles. J Am Chem Soc 129:7647–7656

    Article  CAS  Google Scholar 

  2. Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, Ávalos-Borja M, Castillón-Barraza FF, Posada-Amarillas A (2005) Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol. Phys E Low-dimensional Syst Nanostructures 27:104–112

    Article  CAS  Google Scholar 

  3. Wang X, He F, Zhu X, Tang F, Li L (2014) Hybrid silver nanoparticle/conjugated polyelectrolyte nanocomposites exhibiting controllable metal-enhanced fluorescence. Sci. Rep. 4:4406

    Article  Google Scholar 

  4. Sorokin AV, Zabolotskii AA, Pereverzev NV, Ye SL, Malyukin YV, Plekhanov AI (2014) Plasmon controlled exciton fluorescence of molecular aggregates. J Phys Chem C 118:7599–7605

    Article  CAS  Google Scholar 

  5. Ming T, Chen H, Jiang R, Li Q, Wang J (2012) Plasmon-controlled fluorescence: beyond the intensity enhancement. J Phys Chem Lett 3:191–202

    Article  CAS  Google Scholar 

  6. Aslan K, Wu M, Lakowicz JR, Geddes CD (2007) Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J Am Chem Soc 129:1524–1525

    Article  CAS  Google Scholar 

  7. Wu W, Liu L, Dai Z, Liu J, Yang S, Zhou L, Xiao X, Jiang C, Roy VAL (2015) Low-cost, disposable, flexible and highly reproducible screen printed SERS substrates for the detection of various chemicals. Sci. Rep. 5:10208

    Article  CAS  Google Scholar 

  8. Hsu CW, Zhen B, Qiu W, Shapira O, DeLacy BG, Joannopoulos JD, Soljačić M (2014) Transparent displays enabled by resonant nanoparticle scattering. Nat Commun 5:3152

    Article  Google Scholar 

  9. Tan H, Santbergen R, Smets AHM, Zeman M (2012) Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. Nano Lett 12:4070–4076

    Article  CAS  Google Scholar 

  10. Shi Y, Wang X, Liu W, Yang T, Xu R, Yang F (2013) Multilayer silver nanoparticles for light trapping in thin film solar cells. J Appl Phys 113:176101

    Article  Google Scholar 

  11. Nakayama K, Tanabe K, Atwater HA (2018) Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett 93:121904

    Article  Google Scholar 

  12. Standridge SD, Schatz GC, Hupp JT (2009) Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2. Langmuir 25:2596–2600

    Article  CAS  Google Scholar 

  13. Shi W, Ma Z (2010) Amperometric glucose biosensor based on a triangular silver nanoprisms/chitosan composite film as immobilization matrix. Biosens Bioelectron 26:1098–1103

    Article  CAS  Google Scholar 

  14. Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J Am Chem Soc 123:1471–1482

    Article  CAS  Google Scholar 

  15. Navarro JRG, Werts MHV (2013) Resonant light scattering spectroscopy of gold, silver and gold-silver alloy nanoparticles and optical detection in microfluidic channels. Analyst 138:583–592

    Article  CAS  Google Scholar 

  16. Abel B, Coskun S, Mohammed M, Williams R, Unalan HE, Aslan K (2015) Metal-enhanced fluorescence from silver nanowires with high aspect ratio on glass slides for biosensing applications. J Phys Chem C 119:675–684

    Article  CAS  Google Scholar 

  17. Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4:3974–3983

    Article  CAS  Google Scholar 

  18. Agnihotri S, Mukherji S, Mukherji S (2013) Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver. Nano 5:7328–7340

    CAS  Google Scholar 

  19. Pallavicini P, Taglietti A, Dacarro G, Diaz-Fernandez YA, Galli M, Grisoli P, Patrini M, Santucci De Magistris G, Zanoni R (2010) Self-assembled monolayers of silver nanoparticles firmly grafted on glass surfaces: low Ag+ release for an efficient antibacterial activity. J Colloid Interface Sci 350:110–116

    Article  CAS  Google Scholar 

  20. Chen Y, Munechika K, Ginger DS (2007) Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett 7:690–696

    Article  CAS  Google Scholar 

  21. Tam F, Goodrich G P, Johnson B R, Halas N J (2007) Plasmonic enhancement of molecular fluorescence. Nano Lett 7:496–501

  22. Cade NI, Ritman-Meer T, Richards D (2009) Strong coupling of localized plasmons and molecular excitons in nanostructured silver films. Phys Rev B 79:241404

    Article  Google Scholar 

  23. Alesenkov A, Pilipavičius J, Beganskienė A, Sirutkaitis R, Sirutkaitis V (2015) Nonlinear properties of silver nanoparticles explored by a femtosecond Z-scan technique. Lith J Phys 55:100–109

    Article  Google Scholar 

  24. Liu X, Li D, Sun X, Li Z, Song H, Jiang H, Chen Y (2015) Tunable dipole surface plasmon resonances of silver nanoparticles by cladding dielectric layers. Sci Rep 5:12555

    Article  CAS  Google Scholar 

  25. Atwater H, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  26. Moulin E, Sukmanowski J, Luo P, Carius R, Royer FX, Stiebig H (2008) Improved light absorption in thin-film silicon solar cells by integration of silver nanoparticles. J Non-Cryst Solids 354:2488–2491

    Article  CAS  Google Scholar 

  27. Beck F, Polman A, Catchpole K (2009) Tunable light trapping for solar cells using localized surface plasmons. J Appl Phys 105:114310

    Article  Google Scholar 

  28. Pillai S, Catchpole K (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:93105

    Article  Google Scholar 

  29. Battie Y, Destouches N, Chassagneux F, Jamon D, Bois L, Moncoffre N, Toulhoat N (2011) Optical properties of silver nanoparticles thermally grown in a mesostructured hybrid silica film. Opt Mater Express 1:1019–1033

    Article  CAS  Google Scholar 

  30. Fei Guo C, Sun T, Cao F, Liu Q, Ren Z (2014) Metallic nanostructures for light trapping in energy-harvesting devices. Light Sci Appl 3:e161

    Article  Google Scholar 

  31. Redeckas K, Voiciuk V, Steponaviciute R, Martynaitis V, Sackus A, Vengris M (2014) Optically controlled molecular switching of an indolobenzoxazine-type photochromic compound. J Phys Chem A 118:5642–5651

    Article  CAS  Google Scholar 

  32. Jin R, Cao YC, Hao E, Me GS, Schatz GC, Mirkin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425:487–490

    Article  CAS  Google Scholar 

  33. Chapman M, Mullen M, Novoa-Ortega E, Alhasani M, Elman JF, Euler WB (2016) Structural evolution of ultrathin films of rhodamine 6G on glass. J Phys Chem C 120:8289–8297

    Article  CAS  Google Scholar 

  34. Juluri BK, Lu M, Zheng YB, Huang TJ, Jensen L (2009) Coupling between molecular and plasmonic resonances: effect of molecular absorbance. J Phys Chem C 113:18499–18503

    Article  CAS  Google Scholar 

  35. Ni W, Yang Z, Chen H, Li L, Wang J (2008) Coupling between molecular and plasmonic resonances in freestanding dye-gold nanorod hybrid nanostructures. J Am Chem Soc 130:6692–6693

    Article  CAS  Google Scholar 

  36. Darby BL, Auguié B, Meyer M, Pantoja AE, Le REC (2015) Modified optical absorption of molecules on metallic nanoparticles at sub-monolayer coverage. Nat Photonics 10:40–45

    Article  Google Scholar 

  37. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3806–3819

    Article  CAS  Google Scholar 

  38. Miller MM, Lazarides AA (2005) Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J Phys Chem B 109:21556–21565

    Article  CAS  Google Scholar 

  39. Mock JJ, Smith DR, Schultz S (2003) Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett 3:485–491

    Article  CAS  Google Scholar 

  40. Kazakevičius A, Peckus D, Boiko O, Valkūnas L, Leonenko E, Telbiz G, Gulbinas V (2015) Insights into the mechanism of enhanced rhodamine 6G dimer fluorescence in mesoscopic pluronic-silica matrixes. J Phys Chem C 119:19126–19133

    Article  Google Scholar 

  41. Van Stokkum IHM, Larsen DS, Van Grondelle R (2004) Global and target analysis of time-resolved spectra. Biochim Biophys Acta 1657:82–104

    Article  CAS  Google Scholar 

  42. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  43. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  44. Vasileva MA, Vishchakas J, Gulbinas V, Daugvila A, Kabelka V (1987) Dispersion of a light-induced change in the refractive index of solutions of rhodamine 6G and DODCI dyes influenced by absorption from an excited singlet state. Sov J Quantum Electron 17:1080–1082

    Article  Google Scholar 

  45. Vishchakas J, Gulbinas V, Kabelka V (1985) Determination of the dispersion of the phase response of rhodamine 6G and DODCI dyes. Sov J Quantum Electron 15:1313

    Article  Google Scholar 

  46. Szunerits S, Boukherroub R (2012) Sensing using localised surface plasmon resonance sensors. Chem Commun 48:8999–9010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.S. and M.F. acknowledge funding from the Research Council of Lithuania via project No. ТАР LB-12/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Franckevičius.

Electronic supplementary material

ESM 1

(DOC 3805 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Streckaitė, S., Franckevičius, M., Peckus, D. et al. Enhanced Nonlinear Optical Response of Resonantly Coupled Silver Nanoparticle–Organic Dye Complexes. Plasmonics 13, 749–755 (2018). https://doi.org/10.1007/s11468-017-0568-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0568-3

Keywords

Navigation