Skip to main content
Log in

Tunable Terahertz Filters Based on Graphene Plasmonic All-Dielectric Metasurfaces

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A tunable terahertz filter based on graphene plasmonic all-dielectric metasurfaces is proposed and investigated numerically by using the finite-difference time-domain (FDTD) method. Especially, hybrid all-dielectric metasurfaces are used to make a whole single-sheet graphene forms two different conductivity patterns with the same gate voltage. The simulated results show that resonance wavelength is shifted significantly with the change of gate voltage. Besides, the transmittance spectra are also shifted with the change of the width of SiC, and the filter shows a polarization-dependent modulation property for the length and the width of SiC being 480 and 320 nm, respectively. In addition, the filter can be applied for refractive sensing because the transmittance spectra are shifted with the change of the background refractive index. The study could provide availability for versatile tunable terahertz graphene plasmonic metasurfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Koenig S, Lopez-Diaz D, Antes J et al (2013) Wireless sub-THz communication system with high data rate. Nat Photonics 7(12):977–981

    Article  CAS  Google Scholar 

  2. Ferguson B, ZHANG. Materials for terahertz science and technology. Nat Mater, 2002, 1(1):26–33.

  3. Landy NI, Bingham CM, Tyler T et al (2009) Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging. Phys Rev B 79(12):125104

    Article  Google Scholar 

  4. Markelz AG (2008) Terahertz dielectric sensitivity to biomolecular structure and function. IEEE Journal of Selected Topics in Quantum Electronics 14(1):180–190

    Article  CAS  Google Scholar 

  5. Withayachumnankul W, Abbott D (2009) Metamaterials in the terahertz regime. IEEE Photonics Journal 1(2):99–118

    Article  Google Scholar 

  6. Chen HT, Padilla WJ, Zide JM et al (2006) Active terahertz metamaterial devices. Nature 444(7119):597–600

    Article  CAS  Google Scholar 

  7. Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292(5514):77–79

    Article  CAS  Google Scholar 

  8. Tao H, Bingham CM, Strikwerda AC et al (2008) Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Phys Rev B 78(24):241103

    Article  Google Scholar 

  9. Singh R, Plum E, Menzel C et al (2009) Terahertz metamaterial with asymmetric transmission. Physical Review B Condensed Matter 80(15):153104

    Article  Google Scholar 

  10. Wu C, Arju N, Kelp G et al (2014) Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nat Commun 5:3892–3892

    CAS  Google Scholar 

  11. Chen X, Huang L, Mühlenbernd H et al (2012) Dual-polarity plasmonic metalens for visible light. Nat Commun 3:1198

    Article  Google Scholar 

  12. Ni X, Kildishev AV, Shalaev VM (2013) Metasurface holograms for visible light. Nat Commun 4:2807

    Google Scholar 

  13. Lin D, Fan P, Hasman E et al (2014) Dielectric gradient metasurface optical elements. Science 345(6194):298–302

    Article  CAS  Google Scholar 

  14. Koppens FHL, Chang DE, Abajo FJGD (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11(8):3370–3377

    Article  CAS  Google Scholar 

  15. Fei Z, Rodin AS, Andreev GO et al (2012) Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487(7405):82–85

    Article  CAS  Google Scholar 

  16. Chen J, Badioli M, Alonsogonzález P et al (2012) Optical nano-imaging of gate-tuneable graphene plasmons. Nature 487(7405):77–81

    Article  CAS  Google Scholar 

  17. Brar VW, Jang MS, Sherrott M et al (2013) Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett 13(6):2541–2547

    Article  CAS  Google Scholar 

  18. Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332(6035):1291–1294

    Article  CAS  Google Scholar 

  19. Ju L, Geng B, Horng J et al (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6(10):630–634

    Article  CAS  Google Scholar 

  20. Su X, Wei Z, Wu C et al (2016) Negative reflection from metal/graphene plasmonic gratings. Opt Lett 41(2):348–351

    Article  CAS  Google Scholar 

  21. Sensale-Rodriguez B, Yan R, Kelly MM et al (2012) Broadband graphene terahertz modulators enabled by intraband transitions. Nat Commun 3:780

    Article  Google Scholar 

  22. Smirnova DA, Gorbach AV, Iorsh IV et al (2013) Nonlinear switching with a graphene coupler. Phys Rev B 88(4):175–181

    Article  Google Scholar 

  23. Goldflam MD, Ni GX, Post KW et al (2015) Tuning and persistent switching of graphene plasmons on a ferroelectric substrate. Nano Lett 15(8):4859–4864

    Article  CAS  Google Scholar 

  24. Lu H, Zeng C, Zhang Q et al (2015) Graphene-based active slow surface plasmon polaritons. Scientific Reports 5:8443

    Article  CAS  Google Scholar 

  25. Lu H, Zhao J, Gu M (2016) Nanowires-assisted excitation and propagation of mid-infrared surface plasmon polaritons in graphene. J Appl Phys 120:163106

    Article  Google Scholar 

  26. Correas-Serrano D, Gomez-Diaz JS, Perruisseau-Carrier J et al (2014) Graphene-based plasmonic tunable low-pass filters in the terahertz band. IEEE Trans Nanotechnol 13(6):1145–1153

    Article  Google Scholar 

  27. Lu H, Liu X, Mao D et al (2010) Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt Express 18(17):17922–17927

    Article  CAS  Google Scholar 

  28. Li HJ, Wang LL, Liu JQ et al (2013) Investigation of the graphene based planar plasmonic filters. Appl Phys Lett 103(21):211104–211104-4

    Article  Google Scholar 

  29. Wei Z, Li X, Yin J et al (2016) Active plasmonic band-stop filters based on graphene metamaterial at THz wavelengths. Opt Express 24(13):14344–14351

    Article  CAS  Google Scholar 

  30. Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103(6):064302–064302-8

    Article  Google Scholar 

  31. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  32. Larruquert JI, Pérez-Marín AP, García-Cortés S et al (2011) Self-consistent optical constants of SiC thin films. J Opt Soc Am A 28(11):2340–2345

    Article  CAS  Google Scholar 

  33. Yan R, Liu L, Sensalerodriguez B, et al. 2013 Near-field enhanced graphene terahertz modulator. IEEE, 1–3

  34. Jadidi MM, Sushkov AB, Myers-Ward RL et al (2015) Tunable terahertz hybrid metal–graphene plasmons. Nano Lett 15(10):7099–7104

    Article  CAS  Google Scholar 

  35. Shi B, Cai W, Zhang X et al (2016) Tunable band-stop filters for graphene plasmons based on periodically modulated graphene. Scientific Reports 6:26796

    Article  CAS  Google Scholar 

  36. Guo T, Argyropoulos C (2016) Broadband polarizers based on graphene metasurfaces. Opt Lett 41(23):5592–5595

    Article  Google Scholar 

  37. Ding J, Arigong B, Ren H et al (2015) Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped Nanoslot Array. Plasmonics 10:351–356

    Article  CAS  Google Scholar 

  38. Zhao J, Cao S, Liao C et al (2016) Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber. Sensors & Actuators B Chemical 230:206–211

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant No. 61275059 and No. 11674109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faqiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, LH., Wang, F., Liang, R. et al. Tunable Terahertz Filters Based on Graphene Plasmonic All-Dielectric Metasurfaces. Plasmonics 13, 525–530 (2018). https://doi.org/10.1007/s11468-017-0539-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0539-8

Keywords

Navigation