Skip to main content

Advertisement

Log in

Review of Metasurface Plasmonic Structural Color

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The environmental concerns in the current century is not only limited to the polluting effect of the fossil fuel consumption but also the recycling challenges of waste turns to be a substantial challenges of the industry. Recycling of colored discarded materials is very difficult because of the problems in relation to the dissociation of diverse chemical compounds present in the colorant agents. Single or double component materials which could create various colors by geometrical changes can be a great solution to the mentioned limitations. Metasurfaces’ and metamaterials’ structural color therefore draws attention as they enable generation of vivid colors only by geometrical arrangement of metals which not only ease the recycling but at the same time enhance the mechanical stability of the colors. In this review, the progress in the field of plasmonic metasurface- and metamaterial-based structural colors is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burresi M, Cortese L, Pattelli L, Kolle M, Vukusic P, Wiersma D, Steiner U, Vignolini S (2014) Bright-white beetle scales optimise multiple scattering of light. Scientific reports 4:6075

    Article  CAS  Google Scholar 

  2. Vukusic P, Sambles R, Lawrence C, Wakely G (2001) Sculpted-multilayer optical effects in two species of Papilio butterfly. Appl Opt 40:1116–1125

    Article  CAS  Google Scholar 

  3. Prum R, Morrison R, Eyck G (1994) Structural color production by constructive reflection from ordered collagen arrays in a bird. J Morphol 222:61–72

    Article  Google Scholar 

  4. Mason C (1926) Structural colors in insects. I. J Phys Chem 30:383–395

    Article  CAS  Google Scholar 

  5. Gower C (1936) The cause of blue color as found in the bluebird (Sialia sialis) and the blue Jay (Cyanocitta cristata). Auk 53:178–185

    Article  Google Scholar 

  6. Ralph C (1969) The control of color in birds. Am Zool 9:521–530

    Article  CAS  Google Scholar 

  7. Strong RM (1902) The development of color in the definitive feather. Science 15:527–527

    Google Scholar 

  8. Wright S (1917) Color inheritance in mammals results of experimental breeding can be linked up with chemical researches on pigments—coat colors of all mammals classified as due to variations in action of two enzymes. J Hered 8:224–235

    Article  Google Scholar 

  9. Davenport G, Davenport C (1907) Heredity of eye-color in man. Science 26:589–592

    Article  CAS  Google Scholar 

  10. Parker A (2000) 515 million years of structural colour. J Opt A Pure Appl Opt 2:R15

    Article  Google Scholar 

  11. Hinton H, Gibbs D (1969) An electron microscope study of the diffraction gratings of some carabid beetles. J Insect Physiol 15:959–962

    Article  Google Scholar 

  12. Parker A (2002) Natural photonic engineers. Materials today 5:26–31

    Article  CAS  Google Scholar 

  13. Zhao Y, Xie Z, Gu H, Zhu C, Gu Z (2012) Bio-inspired variable structural color materials. Chem Soc Rev 41:3297–3317

    Article  CAS  Google Scholar 

  14. Kinoshita S, Yoshioka S (2005) Structural colors in nature: the role of regularity and irregularity in the structure. ChemPhysChem 6:1442–1459

    Article  CAS  Google Scholar 

  15. Padovani S, Puzzovio D, Sada C, Mazzoldi P, Borgia I, Sgamellotti A, Brunetti B, Cartechini L, D’acapito F, Maurizio C, Shokoui F, Oliaiy P, Rahighi J, Lamehi-rachti M, Shokoui F (2006) XAFS study of copper and silver nanoparticles in glazes of medieval middle-east lustreware (10th–13th century). Applied Physics A 83:521–528

    Article  CAS  Google Scholar 

  16. Stockman M (2011) Nanoplasmonics: the physics behind the applications. Phys Today 64:39–44

    Article  Google Scholar 

  17. Daniel M, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  18. P. Sciau (2012)Nanoparticles in ancient materials: the metallic lustre decorations of medieval ceramics. In: The delivery of nanoparticles, INTECH Open Access Publisher, , pp. 525–540

  19. Angelini I, Artioli G, Bellintani P, Diella V, Gemmi M, Polla A, Rossi A (2004) Chemical analyses of bronze age glasses from Frattesina di Rovigo, northern Italy. J Archaeol Sci 31:1175–1184

    Article  Google Scholar 

  20. Pradell T, Molera J, Smith A, Tite M (2008) Early Islamic lustre from Egypt, Syria and Iran (10th to 13th century AD). J Archaeol Sci 35:2649–2662

    Article  Google Scholar 

  21. Faraday M (1857) The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 147:145–181

    Article  Google Scholar 

  22. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 330:377–445

    Article  Google Scholar 

  23. Hedayati MK, Faupel F, Elbahri M (2014) Review of plasmonic nanocomposite metamaterial absorber. Materials 7(2):1221–1248

    Article  CAS  Google Scholar 

  24. Murray WA, Barnes WL (2007) Plasmonic materials. Adv Mater 19(22):3771–3782

    Article  CAS  Google Scholar 

  25. Huffman D, Bohren CA (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  26. Elbahri M, Zillohu U, Gothe B, Hedayati M, Abdelaziz R, El-Khozondar H, Bawa’aneh M, Abdelaziz M, Lavrinenko A, Zhukovsky S, Homaeigohar H (2015) Photoswitchable molecular dipole antennas with tailored coherent coupling in glassy composite. Light: Science & Applications 4:e316

    Article  CAS  Google Scholar 

  27. M. Hedayati (2014) Tunable plasmonic metamaterials, Kiel: Doctoral Dissertation

  28. Padilla W, Basov D, Smith D (2006) Negative refractive index metamaterials. Materials today 9:28–35

    Article  CAS  Google Scholar 

  29. Smith D, Padilla W, Vier D, Nemat-Nasser S, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184

    Article  CAS  Google Scholar 

  30. Pendry J, Holden A, Robbins D, Stewart W (1999) Magnetism from conductors and enhanced nonlinear phenomena. Microwave Theory and Techniques IEEE Transactions on 47:2075–2084

    Article  Google Scholar 

  31. Pendry J (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966

    Article  CAS  Google Scholar 

  32. Pendry J, Schurig D, Smith D (2006) Controlling electromagnetic fields. Science 312:1780–1782

    Article  CAS  Google Scholar 

  33. Zheludev N, Prosvirnin S, Papasimakis N, Fedotov V (2008) Lasing spaser. Nat Photonics 2:351–354

    Article  CAS  Google Scholar 

  34. Boltasseva A et al (2011) Low-loss plasmonic metamaterials. Science 331:290–291

    Article  CAS  Google Scholar 

  35. Graydon O (2015) View from... SPP7: a colourful future? Nat Photonics 9:487–488

    Article  CAS  Google Scholar 

  36. Soukoulis C, Wegener M (2011) Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photonics 5:523–530

    CAS  Google Scholar 

  37. Watts C, Liu X, Padilla W (2012) Metamaterial electromagnetic wave absorbers. Adv Mater 24:OP98–OP120

    CAS  Google Scholar 

  38. Asadchy V, Faniayeu I, Ra’di Y, Khakhomov S, Semchenko I, Tretyakov S (2015) Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption. Physical Review X 5:031005

    Article  CAS  Google Scholar 

  39. Ra’di Y, Simovski C, Tretyakov S (2015) Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Physical Review Applied 3:037001

    Article  CAS  Google Scholar 

  40. Teyssier J, Saenko S, Van Der Marel D, Milinkovitch M (2015) Photonic crystals cause active colour change in chameleons. Nat Commun 6:6368

    Article  CAS  Google Scholar 

  41. Whitney A, Van Duyne R, Casadio F (2006) An innovative surface-enhanced Raman spectroscopy (SERS) method for the identification of six historical red lakes and dyestuffs. J Raman Spectrosc 37:993–1002

    Article  CAS  Google Scholar 

  42. Anastas P, Lankey R (2000) Life cycle assessment and green chemistry: the yin and yang of industrial ecology. Green Chem 2:289–295

    Article  CAS  Google Scholar 

  43. Yokogawa S, Burgos S, Atwater H (2012) Plasmonic color filters for CMOS image sensor applications. Nano Lett 12:4349–4354

    Article  CAS  Google Scholar 

  44. Furukawa S, Masui T, Imanaka N (2006) Synthesis of new environment-friendly yellow pigments. J Alloys Compd 418:255–258

    Article  CAS  Google Scholar 

  45. Denton E (1970) Review lecture: on the organization of reflecting surfaces in some marine animals. Philosophical Transactions of the Royal Society B: Biological Sciences 258:285–313

    Article  CAS  Google Scholar 

  46. Wu Z, Lee D, Rubner M, Cohen R (2007) Structural color in porous, Superhydrophilic, and self-cleaning SiO2/TiO2 Bragg stacks. Small 3:1445–1451

    Article  CAS  Google Scholar 

  47. Sato O, Kubo S, Gu Z (2008) Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands. Acc Chem Res 42:1–10

    Article  CAS  Google Scholar 

  48. Zhao Y, Xie Z, Gu H, Zhu C, Gu Z (2012) Bio-inspired variable structural color materials. Chem Soc Rev 41:3297–3317

    Article  CAS  Google Scholar 

  49. Pursiainen O, Baumberg J, Winkler H, Viel B, Spahn P, Ruhl T (2007) Nanoparticle-tuned structural color from polymer opals. Opt Express 15:9553–9561

    Article  CAS  Google Scholar 

  50. Saito A (2011) Material design and structural color inspired by biomimetic approach. Sci Technol Adv Mater 12:064709

    Article  CAS  Google Scholar 

  51. Xu T, Shi H, Wu Y, Kaplan A, Ok J, Guo L (2011) Structural colors: from plasmonic to carbon nanostructures. Small 7:3128–3136

    Article  CAS  Google Scholar 

  52. Xue J, Zhou Z, Wei Z, Su R, Lai J, Li J, Li C, Zhang T, Wang X (2015) Scalable, full-colour and controllable chromotropic plasmonic printing. Nat Commun 6:8906

    Article  CAS  Google Scholar 

  53. Saito A (2011) Material design and structural color inspired by biomimetic approach. Sci Technol Adv Mater 12:064709

    Article  CAS  Google Scholar 

  54. Yu Y, Wen L, Song S, Chen Q (2014) Transmissive/reflective structural color filters: theory and applications. J Nanomater 2014:212637

    Google Scholar 

  55. Gu Y, Zhang L, Yang J, Yeo S, Qiu C (2015) Color generation via subwavelength plasmonic nanostructures. Nanoscale 7:6409–6419

    Article  CAS  Google Scholar 

  56. Jahani S, Jacob Z (2016) All-dielectric metamaterials. Nat Nanotechnol 11:23–36

    Article  CAS  Google Scholar 

  57. Ebbesen TW, Lezec H, Ghaemi H, Thio T, Wolff P (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    Article  CAS  Google Scholar 

  58. Genet C, Ebbesen T (2007) Light in tiny holes. Nature 445:39–46

    Article  CAS  Google Scholar 

  59. Ghaemi H, Thio T, Grupp D, Ebbesen T, Lezec H (1998) Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B 58:6779

    Article  CAS  Google Scholar 

  60. Li Z, Clark A, Cooper J (2016) Dual color plasmonic pixels create a polarization controlled nano color palette. ACS Nano 10:492–498

    Article  CAS  Google Scholar 

  61. Si G, Zhao Y, Liu H, Teo S, Zhang M, Huang T, Danner A, Teng J (2011) Annular aperture array based color filter. Appl Phys Lett 99:033105

    Article  CAS  Google Scholar 

  62. Sun L, Hu X, Xu Y, Wu Q, Shi B, Ye M, Wang L, Zhao J, Li X, Wub Y, Yang S, Tai R, Fecht H, Jiang J, Yang S (2014) Influence of structural parameters to polarization-independent color-filter behavior in ultrathin Ag films. Opt Commun 333:16–21

    Article  CAS  Google Scholar 

  63. Degiron A, Ebbesen T (2005) The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures. J Opt A Pure Appl Opt 7:S90

    Article  Google Scholar 

  64. Sun L, Hu X, Zeng B, Wang L, Yang S, Tai R, Fecht H, Zhang D, Jiang J (2015) Effect of relative nanohole position on colour purity of ultrathin plasmonic subtractive colour filters. Nanotechnology 26:305204

    Article  CAS  Google Scholar 

  65. Fecht H, Zhang D, Jiang J (2015) Effect of relative nanohole position on colour purity of ultrathin plasmonic subtractive. Nanotechnology 26:305204

    Article  CAS  Google Scholar 

  66. Lee H, Yoon Y, Lee S, Kim S, Lee K (2007) Color filter based on a subwavelength patterned metal grating. Opt Express 15:15457–15463

    Article  Google Scholar 

  67. Chen Q, Cumming D (2010) High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Opt Express 18:14056–14062

    Article  CAS  Google Scholar 

  68. Chen Q, Chitnis D, Walls K, Drysdale T, Collins S, Cumming D (2012) CMOS photodetectors integrated with plasmonic color filters. Photonics Technology Letters, IEEE 24:197–199

    Article  CAS  Google Scholar 

  69. Chen Q, Das D, Chitnis D, Walls K, Drysdale T, Collins S, Cumming D (2012) A CMOS image sensor integrated with plasmonic colour filters. Plasmonics 7:695–699

    Article  CAS  Google Scholar 

  70. Rajasekharan R, Balaur E, Minovich A, Collins S, James T, Djalalian-Assl A, Ganesan K, Tomljenovic-Hanic S, Kandasamy S, Skafidas E, Neshev D, Mulvaney P, Roberts A, Prawer S (2014) Filling schemes at submicron scale: development of submicron sized plasmonic colour filters. Scientific reports 4:6435

    Article  CAS  Google Scholar 

  71. Inoue D, Miura A, Nomura T, Fujikawa H, Sato K, Ikeda N, Tsuya D, Sugimoto Y, Koide Y (2011) Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength. Appl Phys Lett 98:093113

    Article  CAS  Google Scholar 

  72. Yu Y, Chen Q, Wen L, Hu X, Zhang H (2015) Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters. Opt Express 23:21994–22003

    Article  CAS  Google Scholar 

  73. Ya-Qi M, Jin-Hai S, Ya-Feng Z, Bing-Rui L, Si-Chao Z, Yan S, Xin-Ping Q, Yi-Fang C (2015) Design and fabrication of structural color by local surface plasmonic meta-molecules. Chinese Physics B 24:080702

    Article  CAS  Google Scholar 

  74. Ritchie R, Arakawa E, Cowan J, Hamm R (1968) Surface-plasmon resonance effect in grating diffraction. Phys Rev Lett 21:1530

    Article  CAS  Google Scholar 

  75. Homola J, Koudela I, Yee S (1999) Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sensors Actuators B Chem 54:16–24

    Article  CAS  Google Scholar 

  76. Zeng B, Gao Y, Bartoli F (2013) Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters. Scientific reports 3:2840

    Article  Google Scholar 

  77. Kaplan A, Xu T, Guo L (2011) High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography. Appl Phys Lett 99:143111

    Article  CAS  Google Scholar 

  78. Yoon Y, Park C, Lee S (2012) Highly efficient color filter incorporating a thin metal–dielectric resonant structure. Appl Phys Express 5:022501

    Article  CAS  Google Scholar 

  79. Park C, Yoon Y, Shrestha V, Park C, Lee S, Kim E (2013) Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating. Opt Express 21:28783–28793

    Article  CAS  Google Scholar 

  80. Shrestha V, Lee S, Kim E, Choi D (2014) Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array. Nano Lett 14:6672–6678

    Article  CAS  Google Scholar 

  81. Honma H, Takahashi K, Fukuhara M, Ishida M, Sawada K (2014) Free-standing aluminium nanowire arrays for high-transmission plasmonic colour filters. Micro & Nano Letters, IET 9:891–895

    Article  CAS  Google Scholar 

  82. Shrestha V, Lee S, Kim E, Choi D (2015) Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array. Scientific reports 5:12450

    Article  Google Scholar 

  83. Ye M, Hu X, Sun L, Shi B, Xu Y, Wang L, Zhaob J, Wub Y, Yangb S, Taib R, Jiang J (2015) Duty cycle dependency of the optical transmission spectrum in an ultrathin nanostructured Ag film. J Alloys Compd 621:244–249

    Article  CAS  Google Scholar 

  84. Kedawat G, Kumar P, Vijay Y, Gupta B (2015) Fabrication of highly efficient resonant structure assisted ultrathin artificially stacked Ag/ZnS/Ag multilayer films for color filter applications. J Mater Chem C 3:6745

    Article  CAS  Google Scholar 

  85. Duempelmann L, Luu-Dinh A, Gallinet B, Novotny L (2016) Four-fold color filter based on plasmonic phase retarder. ACS Photonics 3:190–196

    Article  CAS  Google Scholar 

  86. Kaplan A, Xu T, Wu Y, Guo L (2010) Multilayer pattern transfer for plasmonic color filter applications. J Vac Sci Technol B 28:C6O60–C6O63

    Article  CAS  Google Scholar 

  87. Hu X, Sun L, Shi B, Ye M, Xu Y, Wang L, Zhao J, Li X, Wu Y, Yang S, Tai R, Fecht H, Jiang J, Tai R (2014) Influence of film thickness and nanograting period on color-filter behaviors of plasmonic metal Ag films. J Appl Phys 115:113104

    Article  CAS  Google Scholar 

  88. Xiao B, Pradhan S, Santiago K, Rutherford G, Pradhan A (2015) Enhanced optical transmission and Fano resonance through a nanostructured metal thin film. Scientific reports 5:10393

    Article  CAS  Google Scholar 

  89. Ye Y, Zhang H, Zhou Y, Chen L (2010) Color filter based on a submicrometer cascaded grating. Opt Commun 283:613–616

    Article  CAS  Google Scholar 

  90. Duempelmann L, Casari D, Luu-Dinh A, Gallinet B, Novotny L (2015) Color rendering plasmonic aluminum substrates with angular symmetry breaking. ACS Nano 9:12383–12391

    Article  CAS  Google Scholar 

  91. Yun H, Lee S, Hong K, Yeom J, Lee B (2015) Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity. Nat Commun 6:7133

    Article  Google Scholar 

  92. Zheng J, Ye Z, Sheng Z (2016) Reflective low-sideband plasmonic structural colors. Optical Materials Express 6:381–387

    Article  CAS  Google Scholar 

  93. Hu X, Sun L, Zeng B, Wang L, Yu Z, Bai S, Yang S, Zhao L, Li Q, Qiu M, Tai R (2016) Polarization-independent plasmonic subtractive color filtering in ultrathin Ag nanodisks with high transmission. Appl Opt 55:148–152

    Article  CAS  Google Scholar 

  94. Vorobyev A, Guo C (2008) Colorizing metals with femtosecond laser pulses. Appl Phys Lett 92:041914

    Article  CAS  Google Scholar 

  95. Li G, Li J, Yang L, Li X, Hu Y, Chu J, Huang W (2013) Evolution of aluminum surface irradiated by femtosecond laser pulses with different pulse overlaps. Appl Surf Sci 276:203–209

    Article  CAS  Google Scholar 

  96. Ahsan M, Ahmed F, Kim Y, Lee M, Jun M (2011) Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures. Appl Surf Sci 257:7771–7777

    Article  CAS  Google Scholar 

  97. Dusser B, Sagan Z, Soder H, Faure N, Colombier J, Jourlin M, Audouard E (2010) Controlled nanostructrures formation by ultra fast laser pulses for color marking. Opt Express 18:2913–2924

    Article  CAS  Google Scholar 

  98. Li Z, Zheng H, Teh K, Liu Y, Lim G, Seng H, Yakovlev N (2009) Analysis of oxide formation induced by UV laser coloration of stainless steel. Appl Surf Sci 256:1582–1588

    Article  CAS  Google Scholar 

  99. Antończak A, Kocoń D, Nowak M, Kozioł P, Abramski K (2013) Laser-induced colour marking—sensitivity scaling for a stainless steel. Appl Surf Sci 264:229–236

    Article  CAS  Google Scholar 

  100. Lehmuskero A, Kontturi V, Hiltunen J, Kuittinen M (2010) Modeling of laser-colored stainless steel surfaces by color pixels. Applied Physics B 98:497–500

    Article  CAS  Google Scholar 

  101. Li G, Li J, Hu Y, Zhang C, Li X, Chu J, Huang W (2014) Realization of diverse displays for multiple color patterns on metal surfaces. Appl Surf Sci 316:451–455

    Article  CAS  Google Scholar 

  102. Luo F, Ong W, Guan Y, Li F, Sun S, Lim G, Hong M (2015) Study of micro/nanostructures formed by a nanosecond laser in gaseous environments for stainless steel surface coloring. Appl Surf Sci 328:405–409

    Article  CAS  Google Scholar 

  103. Yao J, Zhang C, Liu H, Dai Q, Wu L, Lan S, Gopal A, Trofimov V, Lysak T (2012) Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses. Appl Surf Sci 258:7625–7632

    Article  CAS  Google Scholar 

  104. Ionin A, Kudryashov S, Makarov S, Seleznev L, Sinitsyn D, Golosov E, Ol’ga A, Kolobov Y, Ligachev A (2012) Femtosecond laser color marking of metal and semiconductor surfaces. Applied Physics A 107:301–305

    Article  CAS  Google Scholar 

  105. Long J, Fan P, Zhong M, Zhang H, Xie Y, Lin C (2014) Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures. Appl Surf Sci 311:461–467

    Article  CAS  Google Scholar 

  106. Ahsan M, Lee M (2013) Colorizing mechanism of brass surface by femtosecond laser induced microstructures. Optik-International Journal for Light and Electron Optics 124:3631–3635

    Article  CAS  Google Scholar 

  107. Ou Z, Huang M, Zhao F (2014) Colorizing pure copper surface by ultrafast laser-induced near-subwavelength ripples. Opt Express 22:17254–17265

    Article  CAS  Google Scholar 

  108. Fan P, Zhong M, Li L, Schmitz P, Lin C, Long J, Zhang H (2014) Angle-independent colorization of copper surfaces by simultaneous generation of picosecond-laser-induced nanostructures and redeposited nanoparticles. J Appl Phys 115:124302

    Article  CAS  Google Scholar 

  109. Hyun J, Kang T, Baek H, Kim D, Yi G (2015) Nanoscale single-element color filters. Nano Lett 15:5938–5943

    Article  CAS  Google Scholar 

  110. Miyazaki H, Kurokawa Y (2006) Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys Rev Lett 96:097401

    Article  CAS  Google Scholar 

  111. Xu T, Wu Y, Luo X, Guo L (2010) Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat Commun 1:59

    Google Scholar 

  112. Yoon Y, Lee S (2010) Transmission type color filter incorporating a silver film based etalon. Opt Express 18:5344–5349

    Article  CAS  Google Scholar 

  113. Park C, Shrestha V, Lee S, Kim E, Choi D (2015) Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay. Scientific reports 5:8467

    Article  CAS  Google Scholar 

  114. Kedawat G, Kumar P, Vijay Y, Gupta B (2015) Fabrication of highly efficient resonant structure assisted ultrathin artificially stacked Ag/ZnS/Ag multilayer films for color filter applications. J Mater Chem C 3:674

    Article  CAS  Google Scholar 

  115. Mao K, Shen W, Yang C, Fang X, Yuan W, Zhang Y, Liu X (2016) Angle insensitive color filters in transmission covering the visible region. Scientific reports 6:19289

    Article  CAS  Google Scholar 

  116. Li Z, Butun S, Aydin K (2015) Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photonics 2:183–188

    Article  CAS  Google Scholar 

  117. Kwon H, Kim S (2015) Chemically tunable, biocompatible, and cost-effective metal–insulator–metal resonators using silk protein and ultrathin silver films. ACS Photonics 2:1675–1680

    Article  CAS  Google Scholar 

  118. Mirshafieyan S, Luk T, Guo J (2016) Zeroth order Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms. Optical Materials Express 6:1032–1042

    Article  CAS  Google Scholar 

  119. Wu Y, Hollowell A, Zhang C, Guo L (2013) Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit. Scientific reports 3:1194

    Article  CAS  Google Scholar 

  120. Aieta F, Genevet P, Kats M, Yu N, Blanchard R, Gaburro Z, Capasso F (2012) Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 12:4932–4936

    Article  CAS  Google Scholar 

  121. Hedayati MK, Javaherirahim M, Mozooni B, Abdelaziz R, Tavassolizadeh A, Chakravadhanula VSK, Zaporojtchenko V, Strunkus T, Faupel F, Elbahri M (2011) Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv Mater 23(45):5410–5414

    Article  CAS  Google Scholar 

  122. Zhao Y, Alù A (2011) Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys Rev B 84:205428

    Article  CAS  Google Scholar 

  123. Huang L, Chen X, Mühlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K, Qiu C, Li J (2013) Three-dimensional optical holography using a plasmonic metasurface. Nat Commun 4:2808

    Google Scholar 

  124. Genevet P, Yu N, Aieta F, Lin J, Kats M, Blanchard R, Scully M, Gaburro Z, Capasso F (2012) Applied physics letters. Ultra-thin plasmonic optical vortex plate based on phase discontinuities 100:013101

    Google Scholar 

  125. Ellenbogen T, Seo K, Crozier K (2012) Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett 12:1026–1031

    Article  CAS  Google Scholar 

  126. Olson JMA, Liu L, Chang W, Foerster B, King N, Knight M, Nordlander P, Halas N, Link S (2014) Vivid, full-color aluminum plasmonic pixels. Proc Natl Acad Sci 111:14348–14353

    Article  CAS  Google Scholar 

  127. Olson J, Manjavacas A, Basu T, Huang D, Schlather A, Zheng B, Halas N, Nordlander P, Link S (2016) High chromaticity aluminum plasmonic pixels for active liquid crystal displays. ACS Nano 10:1108–1117

    Article  CAS  Google Scholar 

  128. Kumar K, Duan H, Hegde R, Koh S, Wei J, Yang J (2012) Printing colour at the optical diffraction limit. Nat Nanotechnol 7:557–561

    Article  CAS  Google Scholar 

  129. Lee S, Forestiere C, Pasquale A, Trevino J, Walsh G, Galli P, Romagnoli M, Dal Negro L (2011) Plasmon-enhanced structural coloration of metal films with isotropic pinwheel nanoparticle arrays. Opt Express 19:23818–23830

    Article  CAS  Google Scholar 

  130. Roberts A, Pors A, Albrektsen O, Bozhevolnyi S (2014) Subwavelength plasmonic color printing protected for ambient use. Nano Lett 14:783–787

    Article  CAS  Google Scholar 

  131. Si G, Zhao Y, Lv J, Lu M, Wang F, Liu H, Xiang N, Huang T, Danner A, Teng J, Liu Y (2013) Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. Nanoscale 5:6243–6248

    Article  CAS  Google Scholar 

  132. Clausen J, Højlund-Nielsen E, Christiansen A, Yazdi S, Grajower M, Taha H, Levy U, Kristensen A, Mortensen N (2014) Plasmonic metasurfaces for coloration of plastic consumer products. Nano Lett 14:4499–4504

    Article  CAS  Google Scholar 

  133. Tan S, Zhang L, Zhu D, Goh X, Wang Y, Kumar K, Qiu C, Yang J (2014) Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett 14:4023–4029

    Article  CAS  Google Scholar 

  134. Yang C, Shen W, Zhang Y, Peng H, Zhang X, Liu X (2014) Design and simulation of omnidirectional reflective color filters based on metal-dielectric-metal structure. Opt Express 22:11384–11391

    Article  CAS  Google Scholar 

  135. Goh X, Zheng Y, Tan S, Zhang L, Kumar K, Qiu C, Yang J (2014) Three-dimensional plasmonic stereoscopic prints in full colour. Nat Commun 5:5361

    Article  CAS  Google Scholar 

  136. Khorasaninejad M, Raeis-Zadeh S, Amarloo H, Abedzadeh N, Safavi-Naeini S, Saini S (2013) Colorimetric sensors using nano-patch surface plasmon resonators. Nanotechnology 24:355501

    Article  CAS  Google Scholar 

  137. Liu Z, Liu G, Liu X, Huang S, Wang Y, Pan P, Liu M (2015) Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity. Nanotechnology 26:235702

    Article  CAS  Google Scholar 

  138. Zhu X, Vannahme C, Højlund-Nielsen E, Mortensen N, Kristensen A (2016) Plasmonic colour laser printing. Nat Nanotechnol 11:325–329

    Article  CAS  Google Scholar 

  139. Cheng F, Gao J, Luk T, Yang X (2015) Structural color printing based on plasmonic metasurfaces of perfect light absorption. Scientific reports 5:11045

    Article  CAS  Google Scholar 

  140. L. Wang, R. Ng, S. Safari Dinachali, M. Jalali, Y. Yu and J. Yang (2016) Large area plasmonic color palettes with expanded gamut using colloidal self-assembly. ACS Photonics

  141. Helgert C, Rockstuhl C, Etrich C, Menzel C, Kley E, Tünnermann A, Lederer F, Pertsch T (2009) Effective properties of amorphous metamaterials. Phys Rev B 79:233107

    Article  CAS  Google Scholar 

  142. Rockstuhl C, Scharf T (2013) Amorphous Nanophotonics. Springer Science & Business Media, New York

    Book  Google Scholar 

  143. Kussow A, Akyurtlu A, Angkawisittpan N (2008) Optically isotropic negative index of refraction metamaterial. Phys Status Solidi B 245:992–997

    Article  CAS  Google Scholar 

  144. Pakizeh T, Dmitriev A, Abrishamian M, Granpayeh N, Käll M (2008) Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches. JOSA B 25:659–667

    Article  CAS  Google Scholar 

  145. Jelınek L, Machac J, Zehentner J (2006) A magnetic metamaterial composed of randomly oriented SRRs. PIERS Online 2:624–627

    Article  Google Scholar 

  146. Hägglund C, Zeltzer G, Ruiz R, Thomann I, Lee H, Brongersma M, Bent S (2013) Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption. Nano Lett 13:3352–3357

    Article  CAS  Google Scholar 

  147. Hedayati MK, Zillohu AU, Strunskus T, Faupel F, Elbahri M (2014) Plasmonic tunable metamaterial absorber as ultraviolet protection film. Appl Phys Lett 104(4):041103

    Article  CAS  Google Scholar 

  148. Yan M, Dai J, Qiu M (2014) Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles. J Opt 16:025002

    Article  CAS  Google Scholar 

  149. Liu K, Zeng X, Jiang S, Ji D, Song H, Zhang N, Gan Q (2014) A large-scale lithography-free metasurface with spectrally tunable super absorption. Nanoscale 6:5599–5605

    Article  CAS  Google Scholar 

  150. Hedayati M, Fahr S, Etrich C, Faupel F, Rockstuhl C, Elbahri M (2014) The hybrid concept for realization of an ultra-thin plasmonic metamaterial antireflection coating and plasmonic rainbow. Nanoscale 6(11):6037–6045

    Article  CAS  Google Scholar 

  151. Yue W, Li Y, Wang C, Yao Z, Lee S, Kim N (2015) Color filters based on a nanoporous Al-AAO resonator featuring structure tolerant color saturation. Opt Express 23:27474–27483

    Article  CAS  Google Scholar 

  152. Ye M, Sun L, Hu X, Shi B, Zeng B, Wang L, Zhao J, Yang S, Tai R, Fecht H, Jiang J, Zhang D (2015) Angle-insensitive plasmonic color filters with randomly distributed silver nanodisks. Opt Lett 40:4979–4982

    Article  CAS  Google Scholar 

  153. Zhang X, Hu A, Zhang T, Lei W, Xue X, Zhou Y, Duley W (2011) Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties. ACS Nano 5:9082–9092

    Article  CAS  Google Scholar 

  154. Ghosh S, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862

    Article  CAS  Google Scholar 

  155. Su K, Wei Q, Zhang X, Mock J, Smith D, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3:1087–1090

    Article  CAS  Google Scholar 

  156. Sönnichsen C, Reinhard B, Liphardt J, Alivisatos A (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23:741–745

    Article  CAS  Google Scholar 

  157. Shaltout A, Liu J, Shalaev V, Kildishev A (2014) Optically active metasurface with non-chiral plasmonic nanoantennas. Nano Lett 14:4426–4431

    Article  CAS  Google Scholar 

  158. Hedayati MK, Javaheri M, Zillohu AU, El-Khozondar HJ, Bawa’aneh MSLA, Faupel F, Elbahri M (2014) Photo-driven super absorber as an active metamaterial. Advanced Optical Materials 2(8):705–710

    Article  CAS  Google Scholar 

  159. Yoo M, Lim S (2014) Active metasurface for controlling reflection and absorption properties. Appl Phys Express 7:112204

    Article  CAS  Google Scholar 

  160. Chen H, Padilla W, Zide J, Gossard A, Taylor A, Averitt R (2006) Active terahertz metamaterial devices. Nature 444:597–600

    Article  CAS  Google Scholar 

  161. Si G, Zhao Y, Leong E, Liu Y (2014) Liquid-crystal-enabled active plasmonics: a review. Materials 7:1296–1317

    Article  CAS  Google Scholar 

  162. Xu T, Walter E, Agrawal A, Bohn C, Velmurugan J, Zhu W, Lezec H, Talin A (2016) High-contrast and fast electrochromic switching enabled by plasmonics. Nat Commun 7:10479

    Article  CAS  Google Scholar 

  163. Wang G, Chen X, Liu S, Wong C, Chu S (2016) Mechanical chameleon through dynamic real-time plasmonic tuning. ACS Nano 10:1788–1794

    Article  CAS  Google Scholar 

  164. Jiang X, Leong E, Liu Y, Si G (2016) Tuning plasmon resonance in depth-variant plasmonic nanostructures. Mater Des 96:64–67

    Article  CAS  Google Scholar 

  165. Liu Y, Si G, Leong E, Xiang N, Danner A, Teng J (2012) Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays. Adv Mater 24:OP131–OP135

    CAS  Google Scholar 

  166. Liu Y, Si G, Leong E, Wang B, Danner A, Yuan X, Teng J (2012) Optically tunable plasmonic color filters. Applied Physics A 107:49–54

    Article  CAS  Google Scholar 

  167. Franklin D, Chen Y, Vazquez-Guardado A, Modak S, Boroumand J, Xu D, Wu S, Chanda D (2015) Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces. Nat Commun 6:7337

    Article  CAS  Google Scholar 

  168. Wang H, Tam F, Grady N, Halas N (2005) Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance. J Phys Chem B 109:18218–18222

    Article  CAS  Google Scholar 

  169. Chan G, Zhao J, Hicks E, Schatz G, Van Duyne R (2007) Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett 7:1947–1952

    Article  CAS  Google Scholar 

  170. Henglein A (1998) Colloidal silver nanoparticles: photochemical preparation and interaction with O2, CCl4, and some metal ions. Chem Mater 10:444–450

    Article  CAS  Google Scholar 

  171. McMahon M, Lopez R, Meyer H III, Feldman L, Haglund R Jr (2005) Rapid tarnishing of silver nanoparticles in ambient laboratory air. Applied Physics B 80:915–921

    Article  CAS  Google Scholar 

  172. Schwab P, Moosmann C, Dopf K, Eisler H (2015) Oxide mediated spectral shifting in aluminum resonant optical antennas. Opt Express 23:26533–26543

    Article  CAS  Google Scholar 

  173. Knight M, King N, Liu L, Everitt H, Nordlander P, Halas N (2013) Aluminum for plasmonics. ACS Nano 8:834–840

    Article  CAS  Google Scholar 

  174. Langhammer C, Schwind M, Kasemo B, Zoric I (2008) Localized surface plasmon resonances in aluminum nanodisks. Nano Lett 8:1461–1471

    Article  CAS  Google Scholar 

  175. E. C. J. M. T. T. L. H. Z. M. N. T. L. P. N. A. J. M. N. A. a. K. A Højlund-Nielsen (2016) Plasmonic colors: toward mass production of metasurfaces, Adv Mater Technol

  176. Schulz U, Wachtendorf V, Klimmasch T, Alers P (2001) The influence of weathering on scratches and on scratch and mar resistance of automotive coatings. Progress in Organic Coatings 42:38–48

    Article  CAS  Google Scholar 

  177. Jardret V, Lucas B, Oliver W, Ramamurthy A (2000) Scratch durability of automotive clear coatings: a quantitative, reliable and robust methodology. J Coatings Technol 72:79–88

    Article  CAS  Google Scholar 

  178. M. Mohseni, B. Ramezanzadeh and H. Yari Effects of environmental conditions on degradation of automotive coatings. In: New trends and developments in automotive industry. INTECH Open Access Publisher, 2011, pp. 267–296

  179. Synnefa A, Santamouris M, Apostolakis K (2007) On the development, optical properties and thermal performance of cool colored coatings for the urban environment. Sol Energy 81:488–497

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Keshavarz Hedayati or Mady Elbahri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshavarz Hedayati, M., Elbahri, M. Review of Metasurface Plasmonic Structural Color. Plasmonics 12, 1463–1479 (2017). https://doi.org/10.1007/s11468-016-0407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0407-y

Keywords

Navigation