Skip to main content

Advertisement

Log in

Ultra-broadband Polarization-Independent Wide-Angle THz Absorber Based on Plasmonic Resonances in Semiconductor Square Nut-Shaped Metamaterials

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Metamaterials are considered to be a promising candidate of making THz absorber for function devices to replace natural materials. Based on geometry evolution, the electromagnetic characteristics of metamaterials can be tailed to enhance the weak THz response of natural materials. Appropriate constituent selection and inhomogeneous geometry constructions are proved to be effective to extend the narrow frequency band of traditional metal resonator-based metamaterial absorbers. In this work, doped silicon was used as the only constituent, and the inhomogeneous geometry was designed in a very simple way (so-called square nut structure) with the assistant of transmission line theory and geometry evolution methodology. Ultra-broadband absorption from 1.6 to 5 THz was verified numerically with an efficiency over 90 %. Various plasmonic resonance modes including surface plasmon polaritons (SPP) together with local surface plasmonic resonance (LSPR) tuned by the inhomogeneous structures and cavities contributed to this broadband absorption. Further working with this geometrical variation concept, our “wheel hub-like” structure achieved ultra-broadband absorption from 0.98 to 5 THz. Our investigations could provide an alternative design methodology for the design of metamaterial THz absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Federici JF, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D (2005) THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond Sci Technol 20(7):S266–S280. doi:10.1088/0268-1242/20/7/018

    Article  CAS  Google Scholar 

  2. Seeds AJ, Shams H, Fice MJ, Renaud CC (2015) Terahertz photonics for wireless communications. J Lightwave Technol 33(3):9

    Article  Google Scholar 

  3. Zhao X, Yuan C, Lv W, Xu S, Yao J (2015) A polarization-independent terahertz plasmon-induced transparency metamaterial based on hybrid graphene-gold structure for bio-sensing. J Mod Opt:1–7. doi:10.1080/09500340.2015.1073803

  4. Liu S, Zhuang S, Petelin MI, Xiang L, Wu B, Ying CP, Wang HF, Zhang P, Liu HY, Jiang B (2015) Terahertz metrology on power, frequency, spectroscopy, and pulse parameters. 9795:97953L. doi:10.1117/12.2214929

  5. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20):207402. doi:10.1103/PhysRevLett.100.207402

    Article  CAS  Google Scholar 

  6. Tao H, Landy NI, Bingham CM, Zhang X, Averitt RD, Padilla WJ (2008) A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt Express 16(10):8

    Article  Google Scholar 

  7. Tao H, Bingham CM, Strikwerda AC, Pilon D, Shrekenhamer D, Landy NI, Fan K, Zhang X, Padilla WJ, Averitt RD (2008) Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Phys Rev B 78(24). doi:10.1103/PhysRevB.78.241103

  8. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342–2348. doi:10.1021/nl9041033

    Article  CAS  Google Scholar 

  9. Zhu B, Wang Z, Huang C, Feng Y, Zhao J, Jiang T (2010) Polarization insensitive metamaterial absorber with wide incident angle. Prog Electromagn Res 101:9

    Article  Google Scholar 

  10. Li L, Yang Y, Liang C (2011) A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes. J Appl Phys 110(6):063702. doi:10.1063/1.3638118

    Article  Google Scholar 

  11. Chen S, Cheng H, Yang H, Li J, Duan X, Gu C, Tian J (2011) Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime. Appl Phys Lett 99(25):253104. doi:10.1063/1.3670333

    Article  Google Scholar 

  12. Zhu W, Zhao X (2009) Metamaterial absorber with dendritic cells. J Opt Soc Am B 26(12):4

    Article  Google Scholar 

  13. Avitzour Y, Urzhumov YA, Shvets G (2009) Wide-angle infrared absorber based on a negative-index plasmonic metamaterial. Phys Rev B 79(4). doi:10.1103/PhysRevB.79.045131

  14. Cheng C-W, Abbas MN, Chiu C-W, Lai K-T, Shih M-H, Chang Y-C (2012) Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays. Opt Express 20(9):6

    CAS  Google Scholar 

  15. Wen Q-Y, Zhang H-W, Xie Y-S, Yang Q-H, Liu Y-L (2009) Dual band terahertz metamaterial absorber: design, fabrication, and characterization. Appl Phys Lett 95(24):241111. doi:10.1063/1.3276072

    Article  Google Scholar 

  16. Zhang B, Zhao Y, Hao Q, Kiraly B, Khoo I-C, Chen S, Huang TJ (2011) Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Opt Express 19(16):8

    Google Scholar 

  17. Jiang ZH, Yun S, Toor F, H.Werner D, Mayer TS (2011) Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating. ACS Nano 5(6):7

    Article  CAS  Google Scholar 

  18. Hendrickson J, Guo J, Zhang B, Buchwald W, Soref R (2012) Wideband perfect light absorber at midwave infrared using multiplexed metal structures. Opt Lett 37(3):3

    Article  Google Scholar 

  19. Cui Y, Fung KH, Xu J, Ma H, Jin Y, He S, Fang NX (2012) Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett 12(3):1443–1447. doi:10.1021/nl204118h

    Article  CAS  Google Scholar 

  20. Xu H-X, Wang G-M, Qi M-Q, Liang J-G, Gong J-Q, Xu Z-M (2012) Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber. Phys Rev B 86(20). doi:10.1103/PhysRevB.86.205104

  21. Zhang N, Zhou P, Wang S, Weng X, Xie J, Deng L (2015) Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers. Opt Commun 338:388–392. doi:10.1016/j.optcom.2014.11.008

    Article  CAS  Google Scholar 

  22. Pu M, Wang M, Hu C, Huang C, Zhao Z, Wang Y, Luo X (2012) Engineering heavily doped silicon for broadband absorber in the terahertz regime. Opt Express 20(23):7

    Article  Google Scholar 

  23. Withayachumnankul W, Shah CM, Fumeaux C, Ung BSY, Padilla WJ, Bhaskaran M, Abbott D, Sriram S (2014) Plasmonic resonance toward terahertz perfect absorbers. ACS Photonics 1(7):625–630. doi:10.1021/ph500110t

    Article  CAS  Google Scholar 

  24. Zhang Y, Han Z (2015) Efficient and broadband terahertz plasmonic absorbers using highly doped Si as the plasmonic material. AIP Adv 5(1):017113. doi:10.1063/1.4905888

    Article  Google Scholar 

  25. Cheng YZ, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong RZ, Bhaskaran M, Sriram S, Abbott D (2015) Ultrabroadband plasmonic absorber for terahertz waves. Advanced Optical Materials 3(3):376–380. doi:10.1002/adom.201400368

    Article  CAS  Google Scholar 

  26. Yin S, Zhu J, Xu W, Jiang W, Yuan J, Yin G, Xie L, Ying Y, Ma Y (2015) High-performance terahertz wave absorbers made of silicon-based metamaterials. Appl Phys Lett 107(7):073903. doi:10.1063/1.4929151

    Article  Google Scholar 

  27. Peng Y, Zang X, Zhu Y, Shi C, Chen L, Cai B, Zhuang S (2015) Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure. Opt Express 23(3):2032–2039. doi:10.1364/OE.23.002032

    Article  CAS  Google Scholar 

  28. Zang X, Shi C, Chen L, Cai B, Zhu Y, Zhuang S (2015) Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings. Scientific reports 5:8901. doi:10.1038/srep08901

    Article  CAS  Google Scholar 

  29. Hanham SM, Fernandez-Dominguez AI, Teng JH, Ang SS, Lim KP, Yoon SF, Ngo CY, Klein N, Pendry JB, Maier SA (2012) Broadband terahertz plasmonic response of touching InSb disks. Adv Mater 24(35):OP226–OP230. doi:10.1002/adma.201202003

    Article  CAS  Google Scholar 

  30. Matthaei GL, Young L, Jones EMT (1964) Microwave filters, impedance-matching networks, and coupling structures. McGraw-Hill

  31. Caglayan H, Hong SH, Edwards B, Kagan CR, Engheta N (2013) Near-infrared metatronic nanocircuits by design. Phys Rev Lett 111(7):073904. doi:10.1103/PhysRevLett.111.073904

    Article  Google Scholar 

  32. Sun Y, Edwards B, Alu A, Engheta N (2012) Experimental realization of optical lumped nanocircuits at infrared wavelengths. Nat Mater 11(3):208–212. doi:10.1038/nmat3230

    Article  CAS  Google Scholar 

  33. Zhang Q, Bai L, Liu X, Liu C, Cui X (2016) Simplified transparent conductive oxides-based ultrabroadband absorber design. J Lightwave Technol 34(4):1354–1359. doi:10.1109/JLT.2016.2515643

    Article  CAS  Google Scholar 

  34. Hashimshony D, Geltner I, Cohen G, Avitzour Y, Zigler A, Smith C (2001) Characterization of the electrical properties and thickness of thin epitaxial semiconductor layers by THz reflection spectroscopy. J Appl Phys 90(11):5778. doi:10.1063/1.1412574

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Science and Technology Development Fund of CAEP under Grant 2014A0302014 and the fund from the Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, Q. & Cui, X. Ultra-broadband Polarization-Independent Wide-Angle THz Absorber Based on Plasmonic Resonances in Semiconductor Square Nut-Shaped Metamaterials. Plasmonics 12, 1137–1144 (2017). https://doi.org/10.1007/s11468-016-0368-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0368-1

Keywords

Navigation