Skip to main content
Log in

Study of Surface Plasmon Resonances of Core-Shell Nanosphere: A Comparison between Numerical and Analytical Approach

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

An investigation of the wavelength dependent extinction spectra of coated sphere with different core@shell compositions based on discrete dipole approximation technique has been presented in this paper. We have used combinations of A g, A u, and S i O 2 for this analysis. Specifically, we study the impact of spherical core-shell thickness on its surface plasmon resonance (SPR) peak positions and corresponding spectral widening in distinct regimes of the spectrum. We observe that SPR peak of core-shell nanoparticle(CSNP) can be tuned over the visible to near-infrared spectrum region by manipulating the core/shell ratio and composition of core and shell. Specifically, for dielectric@metal (core@shell) nanoparticle, SPR peak position shifted towards lower wavelength as we increase the shell thickness, which is opposite to the SPR behavior of metal@dielectric. The extinction spectrum shows linear relation between SPR position and thickness of the shell. Further, we observed two resonant peaks for the case of metal@metal CSNP. The SPR peak of Au@Ag (a eff 100 nm with shell thickness 8 nm) reveals two resonant peak corresponding to Au (594 nm) in red domain, while the peak in blue domain corresponds to Ag (402 nm). We also observe that optical resonance of CSNP can be tuned across the near-infrared region by changing the surrounding medium of higher refractive index. Further, near field pattern of core@shell geometry at resonance wavelength is also shown in the present study. We have also compared the numerical and analyticalmethod for smaller size CSNP with varying thickness and the results show good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang FX, Rodríguez FJ, Albers WM, Ahorinta R, Sipe JE, Kauranen M (2009) Phys Rev B 80:233402

    Article  Google Scholar 

  2. Atwater HA, Polman A (2009) Nat Mater 9:205

    Article  Google Scholar 

  3. Noguez C (2007) J Phys Chem C 111:3806

    Article  CAS  Google Scholar 

  4. Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X, Liu X (2011) Nat Mater 10:968

    Article  CAS  Google Scholar 

  5. Zhang J, Misra R (2007) Acta Biomaterialia 3(6):838

    Article  CAS  Google Scholar 

  6. Caruso F (2001) Adv Mater 13:11

    Article  CAS  Google Scholar 

  7. Wang AQ, Chang CM, Mou CY (2005) J Phys Chem B 109(40):18860

    Article  CAS  Google Scholar 

  8. Wei X, Yang XF, Wang AQ, Li L, Liu XY, Zhang T, Mou CY, Li J (2012) J Phys Chem C 116(10):6222

    Article  CAS  Google Scholar 

  9. Scodeller P, Flexer V, Szamocki R, Calvo EJ, Tognalli N, Troiani H, Fainstein A (2008) J Am Chem Soc 130(38): 12690

    Article  CAS  Google Scholar 

  10. Sounderya N, Zhang Y (2008) Recent Patents on Biomedical Engineering (Discontinued), vol 1

  11. Yan E, Ding Y, Chen C, Li R, Hu Y, Jiang X (2009) Chem Commun:2718–2720

  12. Lauhon LJ, Gudiksen MS, Wang D, Lieber CM (2007) Nature 420:57

    Article  Google Scholar 

  13. Balakrishnan S, Bonder MJ, Hadjipanayis GC (2009) J Magn Magn Mater 321(2):117

    Article  CAS  Google Scholar 

  14. Yang Z, Niu Z, Lu Y, Hu Z, Han CC (2003) Angew Chem Int Ed 42:1943

    Article  CAS  Google Scholar 

  15. Prodan E, Nordlander P (2003) Nano Lett 3(4):543

    Article  CAS  Google Scholar 

  16. Pathak NK, Pandey GK, Ji A, Sharma R (2015) Plasmonics 10(6):1597

    Article  CAS  Google Scholar 

  17. Pathak NK, Ji A, Sharma R (2014) Plasmonics 9(3):651

    Article  CAS  Google Scholar 

  18. Kalele S, Gosavi SW, Urban J, Kulkarni SK (2006) Curr Sci 91(8):1038

    CAS  Google Scholar 

  19. Park HH, Woo K, Ahn JP (2013) Sci Rep:3

  20. Jiang HL, Akita T, Ishida T, Haruta M, Xu Q (2011) J Am Chem Soc 133(5):1304. doi:10.1021/ja1099006

  21. Douvalis AP, Zboril R, Bourlinos AB, Tucek J, Spyridi S, Bakas T (2012) J Nanopart Res 14 (9):1

    Article  Google Scholar 

  22. Liu F, Rao BS, Nunzi JM (2011) Org Electron 12(7):1279

    Article  CAS  Google Scholar 

  23. Vanderkooy A, Chen Y, Gonzaga F, Brook MA (2011) ACS Appl Mater Interfaces 3(10):3942

    Article  CAS  Google Scholar 

  24. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Proc Natl Acad Sci 100(23):13549

    Article  CAS  Google Scholar 

  25. Yang P, Yan H, Mao S, Russoand R, Johnson J, Saykally R, Morris N, Pham J, He R, Choi HJ (2002) Adv Funct Mater 12(5):1616

    Article  Google Scholar 

  26. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Nano Lett 5(4):709

    Article  CAS  Google Scholar 

  27. Lingyan Wang LW, Luo J, Fan Q, Suzuki M, Suzuki IS, Engelhard MH, Lin Y, Kim N, Wang JQ, Zhong CJ (2005) J Phys Chem B 109(46):21593

    Article  Google Scholar 

  28. Zanella R, Sandoval A, Santiago P, Basiuk VA, Saniger JM (2006) J Phys Chem B 110(17):8559

    Article  CAS  Google Scholar 

  29. Monga A, Pal B (2015) New J Chem 39:304

    Article  CAS  Google Scholar 

  30. Lim DK, Kim IJ, Nam JM (2008) Chem Commun:5312–5314

  31. Pande S, Ghosh SK, Praharaj S, Panigrahi S, Basu S, Jana S, Pal A, Tsukuda T, Pal T (2007) J Phys Chem C 111(29):10806

    Article  CAS  Google Scholar 

  32. Bohren CF, Huffman DR (2007) Absorption and Scattering by a Sphere (Wiley-VCH Verlag GmbH)

  33. Yang Z, Aizpurua J, Xu H (2009) J Raman Spectrosc 40(10):1343

    Article  CAS  Google Scholar 

  34. Flatau PJ, Draine BT (2012) Opt Express 20(2):1247

    Article  CAS  Google Scholar 

  35. Draine BT, Flatau PJ (2012) ArXiv e-prints

  36. Draine BT, Flatau PJ (1994) J Opt Soc Am A 11(4):1491

    Article  Google Scholar 

  37. Purcell EM, Pennypacker CR (1973) Astrophysical 186:705

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richa Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Roopak, S., Pathak, N.k. et al. Study of Surface Plasmon Resonances of Core-Shell Nanosphere: A Comparison between Numerical and Analytical Approach. Plasmonics 12, 977–986 (2017). https://doi.org/10.1007/s11468-016-0349-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0349-4

Keywords

Navigation