Skip to main content
Log in

A Study of Metal@Graphene Core–Shell Spherical Nano-Geometry to Enhance the SPR Tunability: Influence of Graphene Monolayer Shell Thickness

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Graphene, new generation advance material of two dimensional hexagonal lattice having extraordinary optical signatures, is used as coating material to enhance the surface plasmon resonance (SPR) effect of core@shell metal nanospheres. In a core@shell nanosphere, we have chosen metal as a core and graphene monolayer (GML) as a shell. We have analysed optical signature of coated and non-coated nanospheres in terms of extinction efficiency (Q ext) and tunabilty of surface plasmon resonances using electrostatic model, where particle size is much smaller than the wavelength of incident light. We analysed this model over different metals (silver, gold and aluminium) core, coated with different thickness of GML (d = 0.1 to 0.5 nm). These core@shell nanospheres are embedded in refractive index media of air (n em = 1), SiO2 (n em = 1.47) and TiO2 (n em = 2.79). The Q ext has been calculated by varying both the core radii as well as the GML shell thickness. Graphene-coated metal nanosphere exhibits SPRs that have wide range tunability from 300 to 1500 nm. In the presenting work, we also analysed that extinction efficiency for metal@GML is higher in TiO2 than others. The optimum value of GML shell thickness is 0.4 nm for TiO2, the magnitude of extinction efficiency is maximum for the optimum thickness. The tunability of these plasmonic resonances is highly dependent on the core@shell material, thickness of Graphene shell and surrounding environment while non-coated metal nano-spheres do not show appropriate SPR tunability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  2. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C111(10):3806–3819

    Google Scholar 

  3. Maier S (2007) Plasmonics: fundamentals and applications. Springer, Berlin

    Google Scholar 

  4. Jain PK, Lee KS, ElSayed IH, ElSayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238

    Article  CAS  Google Scholar 

  5. Wood V, Panzer MJ, Caruge JM, Halpert JE, Bawendi MG, Bulovic V (2010) Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture. Nano Lett 10:24–29

    Article  CAS  Google Scholar 

  6. Liang Z, Sun J, Jiang Y, Jiang L, Chen X (2014) Plasmonic enhanced optoelectronic devices. Plasmonics 9:859–866

    Article  Google Scholar 

  7. McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3(8):1057

    Article  CAS  Google Scholar 

  8. Juan ML, Righini M, Quidant R (2011) Plasmon nano-optical tweezers. Nat Photonics 5:349–356

    Article  CAS  Google Scholar 

  9. Dirix Y, Bastiaansen C, Caseri W, Smith P (1999) Oriented pearl‐necklace arrays of metallic nanoparticles in polymers: a new route toward polarization‐dependent color filters. Adv Mater 11(3):223–227

    Article  CAS  Google Scholar 

  10. Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36:485–496

    Article  CAS  Google Scholar 

  11. Inouye H, Tanaka K, Tanahashi I, Hattori T, Nakatsuka H (2000) Ultrafast optical switching in a silver nanoparticle system. Jpn J Appl Phys 39:5132

    Article  CAS  Google Scholar 

  12. Spinelli P, Ferry VE, van de Groep J, van Lare M, Verschuuren MA, Schropp REI, Atwater HA, Polman A (2012) Plasmonic light trapping in thin-film Si solar cells. J Opt 14:024002 (11pp)

    Article  Google Scholar 

  13. Amendola V, Bakr OM, Stellacci F (2010) A study of the surface Plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, structure, and assembly. Plasmonics 5:85–97

    Article  CAS  Google Scholar 

  14. Zhang W, Saliba M, Stranks SD, Sun Y, Shi X, Wiesner U, Snaith HJ (2013) Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles. Nano Lett 13:4505–4510

    Article  CAS  Google Scholar 

  15. Chen B, Deng J, Tong L, Yang W (2010) Optically active helical polyacetylene@silica hybrid organic–inorganic core/shell nanoparticles: preparation and application for enantioselective crystallization. Macromolecules 43:9613–9619

    Article  CAS  Google Scholar 

  16. Das S, Chattopadhyay A (2012) Generation of inorganic–organic core-shell crystalline nanoparticles of silver and p-hydroxyacetanilide. RSC Adv 2:10245–10250

    Article  CAS  Google Scholar 

  17. Yang Y, Shi J, Kawamurab G, Nogami M (2008) Preparation of Au-Ag, Ag-Au coreshellbimetallic nanoparticles for surface-enhanced Raman scattering. Scr Mater 58:862–865

    Article  CAS  Google Scholar 

  18. Tong Y, Bohm S, Song M (2013) Carbon based coating on steel with improved electrical conductivity. Austin J Nanomedicine Nanotechnol 1(1):1003, 16pp

    Google Scholar 

  19. Bian T, Chang R, Leung PT (2016) Förster resonance energy transfer between molecules in the vicinity of graphene-coated nanoparticles. Plasmonics. doi:10.1007/s11468-015-0167-0

    Google Scholar 

  20. Grigorenko AN, Polini M, Novoselov KS (2012) Grapheneplasmonics. Nat Photonics 6:749–758

    Article  CAS  Google Scholar 

  21. Lv W, Phelan PE, Swaminathan R, Otanicar TP, Taylor RA (2013) Multifunctional coreshell nanoparticle suspensions for efficient absorption. J Sol Energy Eng 135:021005 (7 pp)

    Google Scholar 

  22. Lu H, Cumming BP, Gu M (2015) Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths. Opt Lett 40(15):3647–3650

    Article  CAS  Google Scholar 

  23. Hwang EH, Sensarma R, Das Sarma S (2010) Plasmon-phonon coupling in grapheme. Phys Rev B 82:195406

    Article  Google Scholar 

  24. Koppens FHL, Chang DE, García de Abajo FJ (2011) Graphene Plasmonics: a platform for strong light–matter interactions. Nano Lett 11:3370–3377

    Article  CAS  Google Scholar 

  25. Zhou W, Lee J, Nanda J, Pantelides ST, Pennycook SJ, Idrobo JC (2012) Atomically localized plasmon enhancement in monolayer grapheme. Nat Nanotechnol 7:161–165

    Article  CAS  Google Scholar 

  26. Kanade P, Yadav P, Kumar M, Tripathi B (2015) Plasmon-induced photon manipulation by Ag nanoparticle-coupled graphene thin-film: light trapping for photovoltaics. Plasmonics 10:157–164

    Article  CAS  Google Scholar 

  27. Palik ED (ed) (1985) Handbook of optical constants of solids. Academic, Orlando

    Google Scholar 

  28. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New York

    Book  Google Scholar 

  29. Bao Q, Zhang H, Wang B, Ni Z, Lim C, Wang Y, Tang D, Loh K (2011) Broadband graphene polarizer. Nat Photonics 5:411–415

    Article  CAS  Google Scholar 

  30. Wang B, Zhang X, GarcíaVidal F, Yuan X, Teng J (2012) Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays. Phys Rev Lett 109:07390

    Google Scholar 

  31. Zhao B, Zhao JM, Zhang ZM (2014) Enhancement of near-infrared absorption in graphene with metal gratings. Appl Phys Lett 105:031905

    Article  Google Scholar 

  32. Bhardwaj S, Pathak NK, Ji A, Uma R, Sharma RP (2016) Tunable properties of surface plasmon resonance of metal nanospheroid: graphene plasmon interaction. Plasmonics. doi:10.1007/s1146801602497

    Google Scholar 

  33. Chew WC (1999) Waves and fields in inhomogeneous media. Wiley IEEE Press, New York

    Book  Google Scholar 

  34. Wang B, Zhang X, Yuan X, Teng J (2012) Optical coupling of surface plasmons between graphene sheets. Appl Phys Lett 100:131111

    Article  Google Scholar 

Download references

Acknowledgment

This research is financially supported by MNRE India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivani Bhardwaj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, S., Uma, R. & Sharma, R.P. A Study of Metal@Graphene Core–Shell Spherical Nano-Geometry to Enhance the SPR Tunability: Influence of Graphene Monolayer Shell Thickness. Plasmonics 12, 961–969 (2017). https://doi.org/10.1007/s11468-016-0347-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0347-6

Keywords

Navigation