Skip to main content
Log in

Multi-Band Ultra-Sharp Transmission Response in All-Dielectric Resonant Structures Containing Kerr Nonlinear Media

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

All-dielectric resonant structure (ADRS) consisting of high-index nonlinear dielectrics has been theoretically and numerically demonstrated with multi-band ultra-sharp transmission response in this work. Bandwidth down to sub-nanometer and spectral Q-factor up to 920 are achieved in this ADRS-based metamaterial-like platform. Strong resonant electric field distributions by the high-index dielectric resonators and efficient coupling between the layered dielectric particles and the cavity mainly contribute to the multiple narrowband light transmission filtering. By using a Kerr nonlinear medium as the resonant dielectric, the positions of the transmission dips in the spectrum can be actively tuned by the incident light intensity. Due to the ultra-narrow spectral feature and the strong electric field distribution by the resonators, an efficient all-optical switching behavior with high spectral difference intensity and contrast ratio is obtained. Further study presents the observed multi-band transmission with high scalability by tuning the structural parameters. These optical features hold the predicted ADRS be potentially applied to constructing dielectric metamaterial-based all-optical switching or active subtractive transmission filtering with low power threshold at sub-diffraction scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gibbs HM (1985) Optical bistability: controlling light with light. Academic, New York

    Google Scholar 

  2. Hu X, Jiang P, Ding C, Yang H, Gong Q (2008) Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nat Photonics 2:185–189

    Article  CAS  Google Scholar 

  3. Kumar M, Suchand Sandeep CS, Kumar G, Mishra YK, Philip R, Reddy GB (2014) Plasmonic and nonlinear optical absorption properties of Ag:ZrO2 nanocomposite thin films. Plasmonics 9:129–136

    Article  CAS  Google Scholar 

  4. Zhong Z, Xu Y, Lan S, Dai Q, Wu L (2010) Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media. Opt Express 18:79–86

    Article  CAS  PubMed  Google Scholar 

  5. Zhao W, Ju D, Jiang Y (2015) Pulse controlled all-optical logic gate based on nonlinear ring resonator realizing all fundamental logic operations. Plasmonics 10:311–317

    Article  Google Scholar 

  6. Li J, Zhang Y, Jia T, Sun Z (2014) High tunability multipolar Fano resonances in dual-ring/disk cavities. Plasmonics 9:1251–1256

    Article  CAS  Google Scholar 

  7. Liu G, Deng H, Li G, Chen L, Dai Q, Lan S, Tie S (2014) Nonlinear optical properties of large-sized gold nanorods. Plasmonics 9:1471–1480

    Article  CAS  Google Scholar 

  8. Kumar M, Reddy GB (2010) Tailoring surface plasmon resonance in Ag:ZrO2 nanocomposite thin films. Phys E 43:470–474

    Article  CAS  Google Scholar 

  9. Diebel F, Leykam D, Boguslawski M, Rose P, Denz C, Desyatnikov AS (2014) All-optical switching in optically induced nonlinear waveguide couplers. Appl Phys Lett 104:261111

    Article  CAS  Google Scholar 

  10. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91

    Article  CAS  Google Scholar 

  11. Barnes WL, Dereus A, Ebbsen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  PubMed  Google Scholar 

  12. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  PubMed  Google Scholar 

  13. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204

    Article  CAS  PubMed  Google Scholar 

  14. Liu Z, Shao H, Liu G, Liu X, Zhou H, Hu Y, Zhang X, Cai Z, Gu G (2014) λ 3/20000 plasmonic nanocavities with multispectral ultra-narrowband absorption for high-quality sensing. Appl Phys Lett 104:081116

    Article  CAS  Google Scholar 

  15. Zhang W, Wang Y, Luo L, Li G, Zhang Z (2015) Extraordinary optical transmission of broadband through tapered multilayer slits. Plasmonics 10:547–551

    Article  CAS  Google Scholar 

  16. Liu Z, Yu M, Huang S, Liu X, Wang Y, Liu M, Pan P, Liu G (2015) Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers. J Mater Chem C 3:4222–4227

    Article  CAS  Google Scholar 

  17. Chen J, Xu RQ, Mao P, Liu YJ, Tang CJ, Liu JQ, Zhang LB (2014) Fanolike resonance in light transmission through a planar array of silver circular disks. Mater Lett 136:205–208

    Article  CAS  Google Scholar 

  18. Zhao H, Guang X, Huang J (2008) Novel optical directional couplers based on surface plasmon polaritons. Phys E 40:3025–3209

    Article  Google Scholar 

  19. Hosseini A, Massoud Y (2006) A low-loss metal-insulator-metal plasmonic bragg reflector. Opt Express 14:11318–11323

    Article  Google Scholar 

  20. Lin XS, Lan S (2013) Design of optical filters with flat-on-top transmission lineshapes based on two side-coupled metallic grooves. Plasmonics 8:283–287

    Article  CAS  Google Scholar 

  21. Wang TB, Wen XW, Yin CP, Wang HZ (2009) The transmission characteristics of surface plasmon polaritons in ring resonator. Opt Express 17:24096–24101

    Article  CAS  PubMed  Google Scholar 

  22. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Z, Shi F, Chen Y (2015) Tunable multichannel plasmonic filter based on coupling-induced mode splitting. Plasmonics 10:139–144

    Article  CAS  Google Scholar 

  24. Fang X, Tseng ML, Ou J, MacDonald KF, Tsai DP, Zheludev NI (2014) Ultrafast all-optical switching via coherent modulation of metamaterial absorption. Appl Phys Lett 104:141102

    Article  CAS  Google Scholar 

  25. Liu Z, Liu G, Huang S, Liu X, Pan P, Wang Y, Gu G (2015) Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals. Sens Actuators B 215:480–488

    Article  CAS  Google Scholar 

  26. Thyrrestrup H, Yüce E, Ctistis G, Claudon J, Vos WL, Gérard J (2014) Differential ultrafast all-optical switching of the resonances of a micropillar cavity. Appl Phys Lett 105:111115

    Article  CAS  Google Scholar 

  27. Suhailin FH, Healy N, Franz Y, Sumetsky M, Ballato J, Dibbs AN, Gibson UJ, Peacock AC (2015) Kerr nonlinear switching in a hybrid silica-silicon microspherical resonator. Opt Express 23:17263–17268

    Article  CAS  PubMed  Google Scholar 

  28. Tao J, Wang QJ, Huang XG (2011) All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6:753–759

    Article  Google Scholar 

  29. Dhara S, Lu CY, Chen KH (2015) Plasmonic switching in au-functionalized GaN nanowires in the realm of surface plasmon polariton propagation: a single nanowire switching device. Plasmonics 10:347–350

    Article  CAS  Google Scholar 

  30. Yoshiki W, Tanabe T (2014) All-optical switching using Kerr effect in a silica toroid microcavity. Opt Express 22:24332–24341

    Article  CAS  PubMed  Google Scholar 

  31. Zhao Q, Zhou J, Zhang F, Lippens D (2009) Mie resonance-based dielectric metamaterials. Mater Today 12:60–69

    Article  CAS  Google Scholar 

  32. Jahani S, Jacob Z (2016) All-dielectric metamaterials. Nat Nanotechnol 11:23–36

    Article  CAS  PubMed  Google Scholar 

  33. Shi L, Harris JT, Fenollosa R, Rodriguez I, Lu X, Korgel BA, Meseguer F (2013) Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region. Nat Commun 4:1904

    Article  CAS  PubMed  Google Scholar 

  34. Fan P, Yu Z, Fan S, Brongersma ML (2014) Optical Fano resonance of an individual semiconductor nanostructure. Nat Mater 13:471–475

    Article  CAS  PubMed  Google Scholar 

  35. Yang Y, Kravchenko II, Briggs DP, Valentine J (2014) All-dielectric metasurface analogue of electromagnetically induced transparency. Nat Commun 5:5753

    Article  CAS  PubMed  Google Scholar 

  36. Miroshnichenko AE, Kivshar YS (2012) Fano resonances in all-dielectric oligomers. Nano Lett 12:6459–6463

    Article  CAS  PubMed  Google Scholar 

  37. Palik ED (ed) (1985) Handbook of optical constants of solids. Academic, Boston

    Google Scholar 

  38. Boyd RW (1992) Nonlinear optics. Academic, New York

    Google Scholar 

  39. Taflove A, Hagness SC (2000) Computational electrodynamics: the finite-difference time-domain method, 2nd edn. Artech House, Boston

    Google Scholar 

  40. Liu G, Hu Y, Liu Z, Chen Y, Cai Z, Zhang X, Huang K (2013) Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method. Phys Chem Chem Phys 16:4320–4328

    Article  CAS  Google Scholar 

  41. Joshi BP, Chakrabarty A, Wei QH (2010) Numerical studies of metal–dielectric–metal nanoantennas. IEEE Trans Nanotechnol 9:701–707

    Article  Google Scholar 

  42. Liu X, Liu G, Fu G, Liu M, Liu Z (2016) Monochromatic filter with multiple manipulation approaches by the layered all-dielectric patch array. Nanotechnology 27:125202

    Article  CAS  PubMed  Google Scholar 

  43. Liu Z, Liu G, Huang K, Chen Y, Hu Y, Zhang X, Cai Z (2013) Enhanced optical transmission of a continuous metal film with double metal cylinder arrays. IEEE Photon Technol Lett 25:1157–1160

    Article  Google Scholar 

Download references

Acknowledgments

The work supported from National Natural Science Foundation of China (Grants 11464019, 11264017, 11564017, and 11304159), Young Scientist Development Program of Jiangxi Province (Grant 20142BCB23008), Natural Science Foundation of Jiangxi Province (Grant 20142BAB212001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengqi Liu or Xiaoshan Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Fu, G., Huang, Z. et al. Multi-Band Ultra-Sharp Transmission Response in All-Dielectric Resonant Structures Containing Kerr Nonlinear Media. Plasmonics 12, 577–582 (2017). https://doi.org/10.1007/s11468-016-0300-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0300-8

Keywords

Navigation