Skip to main content
Log in

Metalens Focusing the Co-/cross-polarized Lights in Longitudinal Direction

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Recently, metasurface has attracted lots of attentions because of its great capability in phase engineering for the transmitted cross-polarization light, and many functional optical elements have been designed and investigated. Commonly, the co-polarization and cross-polarization lights will coexist in the transmitted fields. Here, we propose a planar metalens composed of L-shaped nanoholes, which can focus an incident plane wave to two different focal spots in longitudinal direction for the co-polarized and cross-polarized transmitted lights respectively. In our design, the focal length of the transmitted cross-polarized lights can be tuned easily according to Fermat principle. Meanwhile, the focal length of the co-polarized transmitted lights can also be modulated by the ring number of the designed metalens. Because of the polarization-independent characteristic of the L-shaped nanoantenna, the designed planar metalens can also be suitable for both linear and circular polarized incident lights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, Gaburro Z (2011) Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334:333–337

    Article  CAS  Google Scholar 

  2. Huang LL, Chen XZ, Muehlenbernd H, Li GX, Bai BF, Tan QF, Jin GF, Zentgraf T, Zhang S (2012) Dispersionless phase discontinuities for controlling light propagation. Nano Lett 12(5750–5755)

  3. Li RZ, Guo ZY, Wang W, Zhang JR, Zhang AJ, Liu JL, Qu SL, Gao J (2015) “High-efficiency cross polarization converters by plasmonic metasurface,” Plasmonics, DOI 10.1007/s11468-015-9916-3 (posted 10 March 2015, in press)

  4. Larouche S, Smith DR (2012) Reconciliation of generalized refraction with diffraction theory. Opt Lett 37:2391–2393

    Article  Google Scholar 

  5. Genevet P, Yu NF, Aieta F, Lin J, Kats MA, Blanchard R, Scully MO, Gaburro Z, Capasso (2012) “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100, 013101-1-013101-3

  6. Wang W, Li Y, Guo ZY, Li RZ, Zhang JR, Zhang AJ, Qu SL (2015) Ultra-thin optical vortex phase plate based on the metasurface and the angularmomentum transformation. J Opt 17:045102

    Article  Google Scholar 

  7. He JW, Wang XK, Hu D, Ye JS, Feng SF, Kan Q, Zhang Y (2013) Generation and evolution of the terahertz vortex beam. Opt Express 21:20230–20239

    Article  Google Scholar 

  8. Zhang S, Park Y-S, Li J, Lu X, Zhang W, Zhang X (2009) Negative refractive index in chiral metamaterials. Phys Rev Lett 102:023901

    Article  Google Scholar 

  9. Grady NK, Heyes JE, Chowdhury DR, Zeng Y, Reiten MT, Azad AK, Taylor AJ, Dalvit DAR, Chen HT (2013) Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340:1304–1307

    Article  CAS  Google Scholar 

  10. Zhang XQ, Tian Z, Yue WS, Gu JQ, Zhang S, Han JG, Zhang WL (2013) Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Adv Mater 25:4567–4572

    Article  CAS  Google Scholar 

  11. Ni X, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM (2012) Broadband light bending with plasmonic nanoantennas. Science 335:427

    Article  CAS  Google Scholar 

  12. Li RZ, Guo ZY, Wang W, Zhang JR, Zhang AJ, Liu JL, Qu SL, Gao J (2014) Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators. Opt Express 22:27968–27975

    Article  Google Scholar 

  13. Yu N, Aieta F, Genevet P, Kats MA, Gaburro Z, Capasso F (2012) A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett 12:6328–6333

    Article  CAS  Google Scholar 

  14. Huang LL, Chen XZ, Muehlenbemd H, Zhang H, Chen SM, Bai BF, Tan QF, Jin GF, Cheah KW, Qiu CW, Li JS, Zentgraf T, Zhang S (2013) Three-dimensional optical holography using a plasmonic metasurface. Nat Commun 4:2808

    Google Scholar 

  15. Ni X, Kildishev AV, Shalaev VM (2013) Metasurface holograms for visible light. Nat Commun 4:2807

    Google Scholar 

  16. Aieta F, Genevet P, Kats MA, Yu NF, Blanchard R, Gaburro Z, Capasso F (2012) Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 12:4932–4936

    Article  CAS  Google Scholar 

  17. Ni XJ, Ishii S, Kildishev AV, Shalaev VM (2013) Ultra-thin, planar, babinet-inverted plasmonic metalenses. Light: Sci Appl 2:72–77

    Article  Google Scholar 

  18. Jiang XY, Ye JS, He JW, Wang XK, Hu D, Feng SF, Kan Q, Zhang Y (2013) An ultrathin terahertz lens with axial long focal depth based on metasurfaces. Opt Express 21:30030–30038

    Article  Google Scholar 

  19. Hu D, Wang XK, Feng SF, Ye JS, Sun WF, Kan Q, Klar PJ, Zhang Y (2013) Ultrathin terahertz planar elements. Adv Opt Mater 1:186–191

    Article  Google Scholar 

  20. Pors A, Nielsen MG, Eriksen R, Bozhevolnyi SI (2013) Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett 13:829–834

    Article  CAS  Google Scholar 

  21. Wang Q, Zhang XQ, Xu YH, Tian Z, Gu JQ, Yue WS, Zhang S, Han JG, Zhang WL (2015) A broadband metasurface-based terahertz flat-lens array. Adv Opt Mater 3:779–785

    Article  CAS  Google Scholar 

  22. Chen XZ, Huang LL, Muehlenbernd H, Li GX, Bai BF, Tan QF, Jin GF, Qiu CW, Zhang S, Zentgraf T (2012) Dual-polarity plasmonic metalens for visible light. Nat Commun 3:1198–1204

    Article  Google Scholar 

  23. Wang W, Guo ZY, Li RZ, Zhang JR, Liu Y, Wang XS, Qu SL (2015) Ultra-thin, planar, broadband, dual-polarity plasmonic metalens. Photon Res 3:68–71

    Article  CAS  Google Scholar 

  24. Kang M, Feng T, Wang HT, Li J (2012) Wave front engineering from an array of thin aperture antennas. Opt Express 20:15882–15890

    Article  Google Scholar 

  25. Ding XM, Monticone F, Zhang K, Zhang L, Gao DL, Burokur SN, de Lustrac A, Wu Q, Qiu CW, Alù A (2015) Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency. Adv Mater 27:1195–1200

    Article  CAS  Google Scholar 

  26. Wang W, Guo ZY, Li RZ, Zhang JR, Li Y, Liu Y, Wang XS, Qu SL (2015) Plasmonics metalens independent from the incident polarizations. Opt Express 23(13):16782–16791

    Article  Google Scholar 

  27. Palik ED (1998) “gold (Au),” in handbook of optical constants of solids. Academic Press Handbook Series. Academic, New York

    Google Scholar 

  28. Liu YX, Xu H, Stief F, Zhitenev N, Yu M (2011) Far-field superfocusing with an optical fiber based surface plasmonic lens made of nanoscale concentric annular slits. Opt Express 19(21):20233–20243

    Article  Google Scholar 

  29. Yu Y, Zappe H (2011) Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design. Opt Express 19(10):9434–9444

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports for this work from the National Natural Science Foundation of China under Grant No. 61575060 and No. 11374077, and the Fundamental Research Funds for the Central Universities (2015HGCH0010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyi Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Guo, Z., Zhou, K. et al. Metalens Focusing the Co-/cross-polarized Lights in Longitudinal Direction. Plasmonics 12, 69–75 (2017). https://doi.org/10.1007/s11468-016-0230-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0230-5

Keywords

Navigation