Skip to main content
Log in

An Analytical Approach to Calculate the Charge Density of Biofunctionalized Graphene Layer Enhanced by Artificial Neural Networks

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Graphene, a purely two-dimensional sheet of carbon atoms, as an attractive substrate for plasmonic nanoparticles is considered because of its transparency and atomically thin nature. Additionally, its large surface area and high conductivity make this novel material an exceptional surface for studying adsorbents of diverse organic macromolecules. Although there are plenty of experimental studies in this field, the lack of analytical model is felt deeply. Comprehensive study is done to provide more information on understanding of the interaction between graphene and DNA bases. The electrostatic variations occurring upon DNA hybridization on the surface of a graphene-based field-effect DNA biosensor is modeled theoretically and analytically. To start with modeling, a liquid field effect transistor (LGFET) structure is employed as a platform, and graphene charge density variations in the framework of linear Poisson– Boltzmann theories are studied under the impact induced by the adsorption of different values of DNA concentration on its surface. At last, the artificial neural network is used for improving the curve fitting by adjusting the parameters of the proposed analytical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abadi HKF et al (2014) Development of carbon nanotube based biosensors model for detection of single-nucleotide polymorphism. Sci Adv Mater 6(3):513–519

    Article  CAS  Google Scholar 

  2. Polyushkin DK et al (2013) Graphene as a substrate for plasmonic nanoparticles. J Opt 15(11):114001

    Article  Google Scholar 

  3. Driscoll T et al (2009) Memory metamaterials. Science 325(5947):1518–1521

    Article  CAS  Google Scholar 

  4. Huang K-J et al (2011) An electrochemical amperometric immunobiosensor for label-free detection of α-fetoprotein based on amine-functionalized graphene and gold nanoparticles modified carbon ionic liquid electrode. J Electroanal Chem 656(1):72–77

    Article  CAS  Google Scholar 

  5. Kuzyk A et al (2014) Reconfigurable 3D plasmonic metamolecules. Nat Mater 13(9):862–866

    Article  CAS  Google Scholar 

  6. MacDonald KF et al (2009) Ultrafast active plasmonics. Nat Photonics 3(1):55–58

    Article  CAS  Google Scholar 

  7. Zhang S et al (2012) Photoinduced handedness switching in terahertz chiral metamolecules. Nat Commun 3:942

    Article  Google Scholar 

  8. Zheng YB et al (2009) Active molecular plasmonics: controlling plasmon resonances with molecular switches. Nano Lett 9(2):819–825

    Article  CAS  Google Scholar 

  9. De Gendt S (2013) Graphene devices. In: 223rd ECS Meeting (May 12–17, 2013). Ecs.

  10. Datta SS et al (2008) Crystallographic etching of few-layer graphene. Nano Lett 8(7):1912–1915

    Article  CAS  Google Scholar 

  11. Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5(7):487–496

    Article  CAS  Google Scholar 

  12. Nourbakhsh A et al (2013) (Invited) Toward ambient-stable molecular gated graphene-FET: a donor/acceptor hybrid architecture to achieve bandgap in bilayer graphene. ECS Trans 53(1):121–129

    Article  Google Scholar 

  13. Dong X et al (2010) Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv Mater 22(14):1649–1653

    Article  CAS  Google Scholar 

  14. Abouzar MH et al (2012) Label-free electrical detection of DNA by means of field-effect nanoplate capacitors: Experiments and modeling. Phys Status Solidi A 209(5):925–934

    Article  CAS  Google Scholar 

  15. Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21(10):1192–1199

    Article  CAS  Google Scholar 

  16. Karimi H, Yusof R, Rahmani R, Ahmadi MT (2013) Optimization of DNA sensor model based nanostructured graphene using particle swarm optimization technique. J Nanomater. doi:10.1155/2013/789454

  17. Fu D, Li LJ (2010) Label-free electrical detection of DNA hybridization using carbon nanotubes and graphene. Nano Rev 1(0)

  18. Gooding JJ (2002) Electrochemical DNA hybridization biosensors. Electroanalysis 14(17):1149–1156

    Article  CAS  Google Scholar 

  19. Varghese N et al (2009) Binding of DNA nucleobases and nucleosides with graphene. ChemPhysChem 10(1):206–210

    Article  CAS  Google Scholar 

  20. Shin JK et al (2004) Detection of DNA and protein molecules using an FET-type biosensor with gold as a gate metal. Electroanalysis 16(22):1912–1918

    Article  CAS  Google Scholar 

  21. Lee SJ et al (2008) ssDNA aptamer-based surface plasmon resonance biosensor for the detection of retinol binding protein 4 for the early diagnosis of type 2 diabetes. Anal Chem 80(8):2867–2873

    Article  CAS  Google Scholar 

  22. Ang PK et al (2008) Solution-gated epitaxial graphene as pH sensor. J Am Chem Soc 130(44):14392–14393

    Article  CAS  Google Scholar 

  23. Karimi H et al (2014) Development of solution-gated graphene transistor model for biosensors. Nanoscale Res Lett 9(1):1–11

    Article  Google Scholar 

  24. Karimi H et al (2014) Analytical development and optimization of a graphene–solution interface capacitance model. Beilstein J Nanotechnol 5(1):603–609

    Article  CAS  Google Scholar 

  25. Dong X et al (2010) Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv Mater 22(14):1649

    Article  CAS  Google Scholar 

  26. Shinwari W et al (2007) Modeling and simulation of electrochemical DNA biosensors in CMOS technology. McMaster University

  27. Ahmadi MT et al (2009) MOSFET-like carbon nanotube field effect transistor model. In: 2009 NSTI Nanotechnology Conference (Nanotech 2009), Houston, USA

  28. Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nat Nanotechnol 2(10):605–615

    Article  CAS  Google Scholar 

  29. Lemme MC et al (2007) A graphene field-effect device. arXiv preprint cond-mat/0703208

  30. Allen BL, Kichambare PD, Star A (2007) Carbon nanotube field-effect-transistor-based biosensors. Adv Mater 19(11):1439–1451

    Article  CAS  Google Scholar 

  31. Cherstvy A (2013) Detection of DNA hybridization by field-effect DNA-based biosensors: mechanisms of signal generation and open questions. Biosens Bioelectron 46:162–170

    Article  CAS  Google Scholar 

  32. Sarle WS (1994) Neural networks and statistical models

  33. Quah JT, Thwin MMT (2002) Prediction of software readiness using neural network. In: Proceedings of 1st International Conference on Information Technology & Applications

  34. Rahmani R et al (2014) Static VAR compensator using recurrent neural network. Electr Eng 96(2):109–119

    Article  Google Scholar 

  35. Passlack M (2008) III-V metal-oxide-semiconductor technology. 2008 I.E. 20th International Conference on Indium Phosphide and Related Materials (IPRM), p. 59–59

  36. Achuthan M, Bhat MAK (2006) Fundamentals of semiconductor devices. Tata McGraw-Hill

  37. Ahmadi MT et al (2010) Carbon nanotube conductance model in parabolic band structure. IEEE.

  38. Karimi F et al (2012) Analytical modeling of graphene-based DNA sensor. Sci Adv Mater 4(11):1142–1147

    Article  CAS  Google Scholar 

  39. Polash B, Huq HF (2008) Analytical model of carbon nanotube field effect transistors for NEMS applications. 2008 51st Midwest Symposium on Circuits and Systems, Vols 1 and 2, p. 61–64

  40. Ahmadi MT et al (2009) Numerical study of fermi energy for P-type silicon nanowire. Nanosci Nanotechnol 1136:98–102

    CAS  Google Scholar 

  41. Karamdel J et al (2008) Formulation and Simulation for Electrical Properties of a (5,3) Single Wall Carbon Nanotube. ICSE: 2008 I.E. International Conference on Semiconductor Electronics, Proceedings, p. 545–548

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Research University grant of the Ministry of Higher Education (MOHE), Malaysia, under project vot number: 4J011. Also thanks to the Research Management Centre (RMC) of Universiti Teknologi Malaysia (UTM) for providing an excellent research environment in which to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Fauzi Othman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, H., Rahmani, R., Othman, M.F. et al. An Analytical Approach to Calculate the Charge Density of Biofunctionalized Graphene Layer Enhanced by Artificial Neural Networks. Plasmonics 11, 95–102 (2016). https://doi.org/10.1007/s11468-015-9998-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9998-y

Keywords

Navigation