Skip to main content
Log in

A Modified Transmission Line Model for Extraordinary Optical Transmission Through Sub-wavelength Slits

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A modified transmission line model with the equivalent capacitors is proposed to describe extraordinary optical transmission (EOT) of the sub-wavelength slit with different inner walls. The equivalent capacitors can effectively explain the discontinuity of the interface at which the surface wave propagates. The transmittance calculated with this model is in accordance with finite difference time domain (FDTD) calculations. This modified analytical model provides a methodology to analyze the transmission properties of sub-wavelength slits with different inner walls. The results show that if well-designed and manufactured, sub-wavelength curved slits have the ability to enhance the optical transmission in the visible region or the infrared region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391(6668):667–669

    Article  CAS  Google Scholar 

  2. Porto J, Garcia-Vidal F, Pendry J (1999) Transmission resonances on metallic gratings with very narrow slits. Phys Rev Lett 83(14):2845–2848

    Article  CAS  Google Scholar 

  3. Gordon R, Sinton D, Kavanagh KL, Brolo AG (2008) A new generation of sensors based on extraordinary optical transmission. Accounts Chem Res 41(8):1049–1057

    Article  CAS  Google Scholar 

  4. Brolo AG, Gordon R, Leathem B, Kavanagh KL (2004) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20(12):4813–4815

    Article  CAS  Google Scholar 

  5. Yoon Y-T, Park C-H, Lee S-S (2012) Highly efficient color filter incorporating a thin metal-dielectric resonant structure. Appl Phys Express 5(2):022501

    Article  Google Scholar 

  6. Park C-H, Yoon Y-T, Lee S-S (2012) Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure. Opt Express 20(21):23769–23777

    Article  CAS  Google Scholar 

  7. Verslegers L, Catrysse PB, Yu Z, White JS, Barnard ES, Brongersma ML, Fan S (2008) Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett 9(1):235–238

    Article  Google Scholar 

  8. Xie Z, Yu W, Wang T, Zhang H, Fu Y, Liu H, Li F, Lu Z, Sun Q (2011) Plasmonic nanolithography: a review. Plasmonics 6(3):565–580

    Article  Google Scholar 

  9. Cetnar JS, Middendorf JR, Brown ER (2012) Extraordinary optical transmission and extinction in a Terahertz wire-grid polarizer. Appl Phys Lett 100(23):231912

    Article  Google Scholar 

  10. Zhai YS, Wang QL, Li XH, Chen XQ, Huang QQ, Zhao J, Liu J, Xia J (2014) Broadband extraordinary optical transmission of sub-wavelength metallic grating with parabolic wall. J Mod Opt 61(6):530–535

    Article  CAS  Google Scholar 

  11. Shen HH, Maes B (2012) Enhanced optical transmission through tapered metallic gratings. Appl Phys Lett 100(24):241104

    Article  Google Scholar 

  12. Sondergaard T, Bozhevolnyi SI, Beermann J, Novikov SM, Devaux E, Ebbesen TW (2012) Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders. J Opt Soc Am B-Opt Phys 29(1):130–137

    Article  Google Scholar 

  13. Liang Y, Peng W, Hu R, Zou H (2013) Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls. Opt Express 21(5):6139–6152

    Article  CAS  Google Scholar 

  14. Martín-Moreno L, García-Vidal FJ, Lezec HJ, Pellerin KM, Thio T, Pendry JB, Ebbesen TW (2001) Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett 86(6):1114–1117

    Article  Google Scholar 

  15. Hibbins AP, Sambles JR, Lawrence CR (2002) Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate. Appl Phys Lett 81(24):4661–4663

    Article  CAS  Google Scholar 

  16. Beruete M, Sorolla M, Campillo I, Dolado J, Martín-Moreno L, Bravo-Abad J, García-Vidal F (2004) Enhanced millimeter-wave transmission through subwavelength hole arrays. Opt Lett 29(21):2500–2502

    Article  CAS  Google Scholar 

  17. Pendry JB, Martín-Moreno L, Garcia-Vidal FJ (2004) Mimicking surface plasmons with structured surfaces. Science 305(5685):847–848

    Article  CAS  Google Scholar 

  18. Medina F, Mesa F, Marques R (2008) Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective. IEEE Trans Microwave Theory Techniques 56(12):3108–3120

    Article  Google Scholar 

  19. Medina F, Mesa F, Skigin DC (2010) Extraordinary transmission through arrays of slits: a circuit theory model. IEEE Trans Microwave Theory Techniques 58(1):105–115

    Article  Google Scholar 

  20. Alù A, D’Aguanno G, Mattiucci N, Bloemer MJ (2011) Plasmonic brewster angle: broadband extraordinary transmission through optical gratings. Phys Rev Lett 106(12):123902

    Article  Google Scholar 

  21. Rakic AD, Djurisic AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37(22):5271–5283

    Article  CAS  Google Scholar 

  22. Medina F, Rodriguez-Berral R, Mesa F (2012) Circuit model for metallic gratings with tapered and stepped slits, in Microwave Conference (EuMC), 42nd European (IEEE, 2012), p. 1225–8

Download references

Acknowledgments

The authors gratefully thank the financial supports by the National Science Foundation of China (61007036, 61203192,51477028), Natural Science Foundation of Jiangsu Province (BK2012326), Fundamental Research Funds for the Central University, and Graduate Innovation Program of Jiangsu Province (KYLX_0124).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qilong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhai, Y., Wu, S. et al. A Modified Transmission Line Model for Extraordinary Optical Transmission Through Sub-wavelength Slits. Plasmonics 10, 1545–1549 (2015). https://doi.org/10.1007/s11468-015-9952-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9952-z

Keywords

Navigation