Skip to main content
Log in

Numerical Realization of Fano-Type Resonances in Cascaded Plasmonic Heterodimers for Refractive Index Sensing

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose a simple heterodimer system consisting of a long and a short Au nanobar to achieve Fano-type resonances based on the destructive interference between the superradiant and subradiant modes without involvement of higher order multipolar modes of individual components. The plasmonic modes are identified by the distributions of the electric field and charge density. By introducing another short nanobar on the other side of the long nanobar, the dipole moment of the system can be further canceled and the spectral detuning between the superradiant and subradiant mode is decreased. As a result, the Fano-type resonance becomes deeper and its shape is more symmetric. This Fano-type resonance can be utilized in the refractive index sensing because of its narrow linewidth and steep dip. The figure of merit (FoM) can reach as high as 8.74, which is comparable with the results realized in more complicated systems involved with higher order modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  2. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  CAS  Google Scholar 

  3. Jain PK, Huang W, EI-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs. Nano Lett 7:2080–2088

    Article  CAS  Google Scholar 

  4. Olk P, Renger J, Wenzel MT, Eng ML (2008) Distance dependent spectral tuning of two coupled metal nanoparticles. Nano Lett 8:1174–1178

    Article  CAS  Google Scholar 

  5. Funston AM, Novo C, Davis TJ, Mulvaney P (2009) Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett 9:1651–1658

    Article  CAS  Google Scholar 

  6. Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N (2011) Plasmonic oligomers: the role of individual particles in collective behavior. ACS Nano 5:2042–2050

    Article  CAS  Google Scholar 

  7. Woo KC, Shao L, Chen H, Liang Y, Wang J, Lin H-Q (2011) Universal scaling and Fano resonance in the plasmon coupling between gold nanorods. ACS Nano 5:5976–5986

    Article  CAS  Google Scholar 

  8. Liu N, Guo HC, Fu LW, Kaiser S, Schweizer H, Giessen H (2008) There-dimensional photonic metamaterials at optical frequencies. Nat Mater 7:31–37

    Article  CAS  Google Scholar 

  9. Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715

    Article  Google Scholar 

  10. Liu N, Langguth L, Weiss T, Kastel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8:758–762

    Article  CAS  Google Scholar 

  11. Fan JA, Wu C, Bao K, Bardhan R, Halas NJ, Manoharan VN, Nordlander P, Shvets G, Capasso F (2010) Self-assembled plasmonic nanoparticle clusters. Science 328:1135–1138

    Article  CAS  Google Scholar 

  12. Le F, Brabdl DW, Urzhumov YA, Wang H, Kundu J, Halas NJ, Aizpurua J, Nordlander P (2008) Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano 2:707–718

    Article  CAS  Google Scholar 

  13. Mirin A, Bao K, Nordlander P (2009) Fano resonances in plasmonic nanoparticle aggregates. J Phys Chem A 113:4028–4034

    Article  CAS  Google Scholar 

  14. Deng HD, Xu JL, Xu Y (2014) Refractive index sensing by using Fano resonance enhanced two-photon luminescence. Phys Status Solidi-Rapid Res Lett 8:427–430

    Article  CAS  Google Scholar 

  15. Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ (2010) Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett 10:3184–3189

    Article  CAS  Google Scholar 

  16. Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos AP, Liu N (2010) Transition from isolated to collective modes in plasmonic oligomers. Nano Lett 10:2721–2726

    Article  CAS  Google Scholar 

  17. Fan JA, Bao K, Wu C, Bao J, Bardhan R, Halas NJ, Manoharan VN, Shvets G, Nordlander P, Capasso F (2010) Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano Lett 10:4680–4685

    Article  CAS  Google Scholar 

  18. Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101:047401

    Article  Google Scholar 

  19. Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov VV, Van Dorpe P, Nordlander P, Maier SA (2009) Fano resonances in individual coherent plasmonic nanocavities. Nano Lett 9:1663–1667

    Article  CAS  Google Scholar 

  20. Fedotov VA, Rose M, Prosvirnin SL, Papasimarkis N, Zheludev NI (2007) Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys Rev Lett 99:147401

    Article  CAS  Google Scholar 

  21. Hao F, Sonnefraud Y, Van Dorpe P, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8:3983–3988

    Article  CAS  Google Scholar 

  22. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370

    Article  CAS  Google Scholar 

  23. Brown LV, Sobhani H, Lassiter JB, Nordlander P, Halas NJ (2010) Heterodimer: plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4:819–832

    Article  CAS  Google Scholar 

  24. Yang ZJ, Zhang ZS, Zhang W, Hao ZH, Wang QQ (2010) Twinned Fano interferences induced by hybridized plasmons in Au-Ag nanorod heterodimers. Appl Phys Lett 96:13113

    Google Scholar 

  25. Hao F, Nordlander P, Sonnefraud Y, Dorpe PV, Maier SA (2009) Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 3:643–652

    Article  CAS  Google Scholar 

  26. Chen ZX, Chen JH, Wu ZJ, Hu W, Zhang XJ, Lu YQ (2014) Tunable Fano resonance in hybrid grapheme-metal gratings. Appl Phys Lett 104:161114

    Article  Google Scholar 

  27. Zhan YH, Lei DY, Li XF, Maier SA (2014) Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing. Nanoscale 6:4705–4715

    Article  CAS  Google Scholar 

  28. Wei XZ, Altissimo M, Davis TJ, Mulvaney P (2014) Fano resonances in three-dimensional dual cut-wire pairs. Nanoscale 6:5372–5377

    Article  CAS  Google Scholar 

  29. Cetin AE, Altug H (2012) Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. ACS Nano 6:9989–9995

    Article  CAS  Google Scholar 

  30. Wu C, Khanikaev AB, Adato R, Arju N, Yanik AA, Altug H, Shvets G (2012) Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat Mater 11:69–75

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 61378082) and the Project of High-level Professionals in the Universities of Guangdong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Li, Q., Xu, L. et al. Numerical Realization of Fano-Type Resonances in Cascaded Plasmonic Heterodimers for Refractive Index Sensing. Plasmonics 10, 1401–1407 (2015). https://doi.org/10.1007/s11468-015-9947-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9947-9

Keywords

Navigation