Skip to main content
Log in

Plasmonic Absorption Enhancement of a Single Quantum Dot

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We study analytically the absorption properties of an individual quantum absorber, modeled as a two-level system, in the presence of a metallic nanoparticle. The coupling between the two systems can give rise to a Fano interference effect and to a relevant modification of the absorption cross section. Such effect strongly depends on the angle between the dimer axis and the electromagnetic field polarization. From this analysis, we can conclude that the localized surface plasmons are able to enhance the absorption of nanostructures, thus increasing the efficiency of solar cells based on absorbing nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Maier SA (2007) Plasmonics: fundamentals and applications, XXII. Springer, New York

    Google Scholar 

  2. Li JF, et al. (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392–395

    Article  CAS  Google Scholar 

  3. Noginov MA, et al. (2009) Demonstration of a spaser-based nanolaser. Nature 460:1110–1112

    Article  CAS  Google Scholar 

  4. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  5. Chang DE, Sørensen AS, Demler EA, Lukin MD (2007) A single-photon transistor using nanoscale surface plasmons, vol 3, pp 807–812

  6. Hu M., et al. (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35:1084–1094

    Article  CAS  Google Scholar 

  7. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511

    Article  CAS  Google Scholar 

  8. Malyarchuk V, et al. (2005) High performance plasmonic crystal sensor formed by soft nanoimprint lithography. Opt Express 13:5669–5675

    Article  Google Scholar 

  9. Jain PK, Huang X, El-Sayed IH, El-Sayad MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107–118

    Article  CAS  Google Scholar 

  10. Fofang NT, Park T-H, Neumann O, Mirin NA, Nordlander P, Halas NJ (2008) Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes. Nano Lett 8:3481– 487

    Article  CAS  Google Scholar 

  11. Savasta S, Saija R, Ridolfo A, Di Stefano O, Denti P, Borghese F (2010). ACS Nano 4:6369–6374

    Article  CAS  Google Scholar 

  12. Ridolfo A, Di Stefano O, Fina N, Saija R., Savasta S (2010) Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the fano effect on photon statistics. Phys Rev Lett 105:263601

    Article  CAS  Google Scholar 

  13. Vivian E, Sweatlock LA, Pacifini D, Atwater HA (2008) Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett 8:4391–4397

    Article  Google Scholar 

  14. Akimov YA, Ostrikov K, Li EP (2009) Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4:107–113

    Article  CAS  Google Scholar 

  15. Metiu H (1984) Surface enhanced spectroscopy. Prog Surf Sci 17:153–320

    Article  CAS  Google Scholar 

  16. Mertensm H, Koenderink A.F., Polman A (2007) Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model. Phys Rev B 76:115123–1-115123-12

    Google Scholar 

  17. Oulton RF, et al. (2009) Plasmon lasers at deep subwavelength scale. Nature 461:629–632

    Article  CAS  Google Scholar 

  18. White JS, et al. (2009) Extraordinary optical absorption through subwavelength slits. Opt Lett 34:686–688

    Article  CAS  Google Scholar 

  19. Ishi T, et al. (2005) Si nano-photodiode with a surface plasmon antenna. Jpn J Appl Phys 44:L364

    Article  CAS  Google Scholar 

  20. Pacifici D, Lezec HJ, Atwater HA (2007) All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photonics 1:402–407

    Article  CAS  Google Scholar 

  21. Hao F, et al. (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8:3983–3988

    Article  CAS  Google Scholar 

  22. Sonnefraud Y, et al. (2010) and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 4 (3):1664–1670

    Article  CAS  Google Scholar 

  23. Neubrech F, othetrs (2008) Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys Rev Lett 101:157403

    Article  Google Scholar 

  24. Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82:2257–2298

    Article  CAS  Google Scholar 

  25. Giannini V, et al. (2010) Controlling light localization and lightmatter interactions with nanoplasmonics. Small 6:2498–2507

    Article  CAS  Google Scholar 

  26. Ridolfo A, Saija R, Savasta S, Jones PH, Iati MA, Marago OM (2011) Fano-doppler laser cooling of hybrid nanostructures. ACS Nano 5:7354–7361

    Article  CAS  Google Scholar 

  27. Liu Na, et al. (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8:758–762

    Article  CAS  Google Scholar 

  28. Rousseau DL, Porto SPS (1968) Auger-like resonant interference in raman scattering from one- and two-phonon states of BaTiO3. Phys Rev Lett 20:1354–1357

    Article  CAS  Google Scholar 

  29. Nitzana A, Jortner J (1972) Line shape of a molecular resonance. Mol Phys 24:109–131

    Article  Google Scholar 

  30. Nunes LAO, Ioriatti L, Florez LT, Harbison JP (1993) Fano-like resonant interference in Raman spectra of electronic and LO-vibronic excitations in periodically-doped GaAs. Phys Rev B 4:13011

    Article  Google Scholar 

  31. Christ A, Tikhodeev SG, Gippius NA, Kuhl J, Giessen H (2003) Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. Phys Rev Lett 91:183901

    Article  CAS  Google Scholar 

  32. Aizpurua J, Taubner TF, De Abajo JG, Brehm M, Hillenbrand R (2008) Substrate-enhanced infrared near-field spectroscopy. Opt Express 16:1529–1545

    Article  Google Scholar 

  33. Priolo F, Gregorkiewicz T, Galli M, Krauss FT (2014) Silicon nanostructures for photonics and photovoltaics. Nat Nanotechnol 9:19–32

    Article  CAS  Google Scholar 

  34. Flagg EB, et al. (2009) Nat Phys 5:203–207

    Article  CAS  Google Scholar 

  35. Ruppin R (1982) Decay of an excited molecule near a small metal sphere. J Chem Phys 76:1681–1684

    Article  CAS  Google Scholar 

  36. Zhang W, Govorov O, Bryant GW (2006) Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect. Phys Rev Lett 97:146804

    Article  Google Scholar 

  37. Schwartz T, Hutchison JA, Genet C, Ebbesen TW (2011) Reversible switching of ultrastrong light-molecule coupling. Phys Rev Lett 106:196405

    Article  CAS  Google Scholar 

  38. Ridolfo A, Leib M, Savasta S, Hartmann MJ (2012) Photon blockade in the ultrastrong coupling regime. Phys Rev Lett 109:193602

    Article  CAS  Google Scholar 

  39. Ridolfo A, Savasta S, Hartmann MJ (2013) Nonclassical radiation from thermal cavities in the ultrastrong coupling regime. Phys Rev Lett 110:163601

    Article  CAS  Google Scholar 

  40. Stassi R, Ridolfo A, Di Stefano O, Hartmann M., Savasta S (2013) Spontaneous conversion from virtual to real photons in the ultrastrong-coupling regime. Phys Rev Lett 110:243601

    Article  CAS  Google Scholar 

  41. Mazzeo M, et al. (2014) Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes. Appl Phys Lett 104:233303

    Article  Google Scholar 

  42. Cacciola A, Di Stefano O, Stassi R, Saija R., Savasta S (2014) Ultrastrong Coupling of Plasmons and Excitons, in a Nanoshell. ACS Nano 8:11483–11492

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Savasta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arena, S., Cucinotta, F., Di Stefano, O. et al. Plasmonic Absorption Enhancement of a Single Quantum Dot. Plasmonics 10, 955–962 (2015). https://doi.org/10.1007/s11468-015-9886-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9886-5

Keywords

Navigation