Skip to main content
Log in

Electro-absorption Modulator with Dual Carrier Accumulation Layers Based on Epsilon-Near-Zero ITO

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

An electro-absorption modulator based on indium tin oxide is proposed by constructing a waveguide consisting of metal-dielectric-ITO-dielectric-Si stack. Applying a negative voltage bias on the ITO layer, carrier accumulation occurs at both dielectric-ITO interfaces, which dramatically changes the guided mode properties due to the epsilon-near-zero effect. By tuning the real part of the permittivity around zero, the guided plasmonic mode concentrates in either ITO or dielectric layers, resulting in a high propagation loss. These dual carrier accumulation layers significantly improve the extinction ratio of the modulator. A further improvement is obtained by using high refractive index dielectric thin layers, which provides a strong optical confinement in the carrier accumulation layers. The dual carrier accumulation layer device shows a 200 % increase of the modulation efficiency compared to a single accumulation layer design. A modulation depth of 9.9 dB/μm can be achieved by numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reed GT, Mashanovich G, Gardes FY, Thomson DJ (2010) Silicon optical modulators. Nat Photon 4(8):518–526. doi:10.1038/NPHOTON.2010.179

    Article  CAS  Google Scholar 

  2. Thomson DJ, Gardes FY, Fedeli JM, Zlatanovic S, Hu YF, Kuo BPP, Myslivets E, Alic N, Radic S, Mashanovich GZ, Reed GT (2012) 50-Gb/s silicon optical modulator. IEEE Photon Tech L 24(4):234–236. doi:10.1109/Lpt.2011.2177081

    Article  CAS  Google Scholar 

  3. Akiyama S, Baba T, Imai M, Akagawa T, Noguchi M, Saito E, Noguchi Y, Hirayama N, Horikawa T (2012) Usuki T 50-Gb/s silicon modulator using 250-μm-long phase shifter based-on forward-biased pin diodes. In: Group IV Photonics (GFP), IEEE 9th International Conference on, San Diego, CA, Aug 2012. SPIE, pp 192–194. doi:10.1109/GROUP4.2012.6324130

  4. Akiyama S, Imai M, Baba T, Akagawa T, Hirayama N, Noguchi Y, Seki M, Koshino K, Toyama M, Horikawa T, Usuki T (2013) Compact PIN-diode-based silicon modulator using side-wall-grating waveguide. IEEE J Sel Top Quantum Electron 19(6):74–84. doi:10.1109/JSTQE.2013.2278438

    Article  Google Scholar 

  5. Dionne JA, Diest K, Sweatlock LA, Atwater HA (2009) PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. Nano Lett 9(2):897–902. doi:10.1021/Nl803868k

    Article  CAS  Google Scholar 

  6. Zhu SY, Lo GQ, Kwong DL (2011) Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides. Appl Phys Lett 99(15):151114–151114. doi:10.1063/1.3653240

    Article  Google Scholar 

  7. Zhu SY, Lo GQ, Kwong DL (2013) Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides. Opt Express 21(7):8320–8330. doi:10.1364/Oe.21.008320

    Article  CAS  Google Scholar 

  8. Feigenbaum E, Diest K, Atwater HA (2010) Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett 10(6):2111–2116. doi:10.1021/nl1006307

    Article  CAS  Google Scholar 

  9. Traviss D, Bruck R, Mills B, Abb M, Muskens OL (2013) Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime. Appl Phys Lett 102(12):121112–121112. doi:10.1063/1.4798833

    Article  Google Scholar 

  10. Noginov MA, Gu L, Livenere J, Zhu G, Pradhan AK, Mundle R, Bahoura M, Barnakov YA, Podolskiy VA (2011) Transparent conductive oxides: plasmonic materials for telecom wavelengths. Appl Phys Lett 99(2):021101–021101. doi:10.1063/1.3604792

    Article  Google Scholar 

  11. Lu Z, Zhao W, Shi K (2012) Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides. IEEE Photon J 4(3):735–740. doi:10.1109/JPHOT.2012.2197742

    Article  Google Scholar 

  12. Sorger VJ, Lanzillotti-Kimura ND, Ma RM, Zhang X (2012) Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics 1:17–22. doi:10.1515/nanoph-2012-0009

    Article  CAS  Google Scholar 

  13. Yi F, Shim E, Zhu AY, Zhu H, Reed JC, Cubukcu E (2013) Voltage tuning of plasmonic absorbers by indium tin oxide. Appl Phys Lett 102(22):221102. doi:10.1063/1.4809516

    Article  Google Scholar 

  14. Allen MS, Allen JW, Wenner BR, Look DC, Leedy KD (2013) Application of highly conductive ZnO to plasmonics. In: The International Society for Optical Engineering, San Francisco, CA. SPIE, pp 862605–862605. doi:10.1117/12.2001613

  15. Lee HW, Papadakis G, Burgos SP, Chander K, Kriesch A, Pala R, Peschel U, Atwater HA (2014) Nanoscale conducting oxide PlasMOStor. Nano Lett 14(11):6463–6468. doi:10.1021/nl502998z

    Article  CAS  Google Scholar 

  16. Michelotti F, Dominici L, Descrovi E, Danz N, Menchini F (2009) Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 mu m. Opt Lett 34(6):839–841. doi:10.1364/OL.34.000839

    Article  CAS  Google Scholar 

  17. Melikyan A, Vallaitis T, Lindenmann N, Schimmel T, Freude W, Leuthold JA (2010) Surface plasmon polariton absorption modulator. In: Conference on Lasers and Electro-Optics 2010, San Jose, California, May. OSA Technical Digest (CD). Optical Society of America, pp JThE77-JThE77. doi:10.1364/CLEO.2010.JThE77

  18. Baek J, You J-B, Yu K (2015) Free-carrier electro-refraction modulation based on a silicon slot waveguide with ITO. Opt Express 23(12):15863–15876. doi:10.1364/OE.23.015863

    Article  Google Scholar 

  19. Zhao H, Wang Y, Capretti A, Negro LD, Klamkin J (2015) Broadband electroabsorption modulators design based on epsilon-near-zero indium tin oxide. IEEE J Sel Top Quantum Electron 21(4):1–7. doi:10.1109/JSTQE.2014.2375153

    Article  Google Scholar 

  20. Zhu S, Lo GQ, Kwong DL (2014) Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration. Opt Express 22(15):17930–17947. doi:10.1364/OE.22.017930

    Article  Google Scholar 

  21. Palik ED (1985) Handbook of optical constants of solids. Academic Press

  22. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379. doi:10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

  23. Ye C, Khan S, Zhuo Ran L, Simsek E, Sorger VJ (2014) Size ITO and graphene-based electro-optic modulators on SOI. IEEE J Sel Top Quantum Electron 20(4):1–10. doi:10.1109/JSTQE.2014.2298451

    Google Scholar 

  24. Miller DAB (2012) Energy consumption in optical modulators for interconnects. Opt Express 20(S2):A293–A308. doi:10.1364/OE.20.00A293

    Article  Google Scholar 

  25. Jin L, Chen Q, Wen L (2014) Mode-coupling polarization rotator based on plasmonic waveguide. Opt Lett 39(9):2798–2801. doi:10.1364/OL.39.002798

    Article  CAS  Google Scholar 

  26. Jin L, Chen Q, Song SC (2013) Plasmonic waveguides with low polarization dependence. Opt Lett 38(16):3078–3081. doi:10.1364/OL.38.003078

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 61405235 and 61574158), the Natural Science Foundation of Jiangsu Province for Youths (No. BK20130365), Suzhou Science and Technology Development Program Foundation (No. ZXG201425), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (No. IOSKL2013KF01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Chen, Q., Liu, W. et al. Electro-absorption Modulator with Dual Carrier Accumulation Layers Based on Epsilon-Near-Zero ITO. Plasmonics 11, 1087–1092 (2016). https://doi.org/10.1007/s11468-015-0146-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0146-5

Keywords

Navigation