Skip to main content
Log in

Plasmonic Enhancement by a Continuous Gold Underlayer: Application to SERS Sensing

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we report on an improved enhancement of the surface-enhanced Raman scattering (SERS) effect. Such improvement is obtained by using a continuous gold film (underlayer), which is added below an array of gold nanostructures. Two types of nanostructures were studied to validate our results: regular disk arrays with two diameters (110 and 210 nm) and lines with a width of 110 nm, all on a gold film of 30 nm thick. A supplementary gain of one order of magnitude on the SERS enhancement factor (EF) was experimentally demonstrated for several excitation wavelengths: 633, 660, and 785 nm. With such SERS substrates, EFs of 107 are observed for thiophenol detection. This opens the way towards routine and reliable detection of molecules at low concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Raman CV (1928) A new radiation. Indian J Phys 2:387–398

    CAS  Google Scholar 

  2. Fleischmann M, Hendra P, McQuillan A (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166. doi:10.1016/0009-2614(74)85388-1

    Article  CAS  Google Scholar 

  3. Le Ru EC, Etchegoin PG (2012) Single-molecule surface-enhanced Raman spectroscopy. Annu Rev Phys Chem 63(1):65–87. doi:10.1146/annurev-physchem-032511-143757

    Article  Google Scholar 

  4. Sharma B, Frontiera RR, Henry A-I, Ringe E, Van Duyne RP (2012) SERS: materials, applications, and the future. Materials Today 15(1–2):16–25. doi:10.1016/S1369-7021(12)70017-2

    Article  CAS  Google Scholar 

  5. Guillot N, de la Chapelle ML (2012) Lithographied nanostructures as nanosensors. NANOP 6 (1):064506-064501-064506-064528. doi:10.1117/1.JNP.6.064506

  6. Vo-Dinh T, Wang H-N, Scaffidi J (2010) Plasmonic nanoprobes for SERS biosensing and bioimaging. J Biophotonics 3(1–2):89–102. doi:10.1002/jbio.200910015

    CAS  Google Scholar 

  7. Tian ZQ, Ren B, Wu DY (2002) Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J Phys Chem B 106(37):9463–9483. doi:10.1021/jp0257449

    Article  CAS  Google Scholar 

  8. Baia M, Baia L, Astilean S, Popp J (2006) Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings. Appl Phys Lett 88(14), 143121. doi:10.1063/1.2193778

    Article  Google Scholar 

  9. Yuan H, Fales AM, Khoury CG, Liu J, Vo-Dinh T (2013) Spectral characterization and intracellular detection of surface-enhanced Raman scattering (SERS)-encoded plasmonic gold nanostars. J Raman Spectrosc 44(2):234–239. doi:10.1002/jrs.4172

    Article  Google Scholar 

  10. Vo-Dinh T, Dhawan A, Norton SJ, Khoury CG, Wang H-N, Misra V, Gerhold MD (2010) Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing. J Phys Chem C 114(16):7480–7488. doi:10.1021/jp911355q

    Article  CAS  Google Scholar 

  11. Guillot N, de la Chapelle ML (2012) The electromagnetic effect in surface enhanced Raman scattering: enhancement optimization using precisely controlled nanostructures. J Quant Spectrosc Radiat Transf 113(18):2321–2333. doi:10.1016/j.jqsrt.2012.04.025

    Article  CAS  Google Scholar 

  12. Brown RJC, Milton MJT (2008) Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS). J Raman Spectrosc 39(10):1313–1326. doi:10.1002/jrs.2030

    Article  CAS  Google Scholar 

  13. Cialla D, Marz A, Bohme R, Theil F, Weber K, Schmitt M, Popp J (2012) Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 403(1):27–54. doi:10.1007/s00216-011-5631-x

    Article  CAS  Google Scholar 

  14. Fan M, Andrade GFS, Brolo AG (2011) A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta 693(1–2):7–25. doi:10.1016/j.aca.2011.03.002

    Article  CAS  Google Scholar 

  15. Yu QM, Braswell S, Christin B, Xu JJ, Wallace PM, Gong H, Kaminsky D (2010) Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays. Nanotechnology 21(35):9. doi:10.1088/0957-4484/21/35/355301

    Article  Google Scholar 

  16. Yue WS, Yang Y, Wang ZH, Han JG, Syed A, Chen LQ, Wong K, Wang XB (2012) Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes. J Phys D-Appl Phys 45(42):7. doi:10.1088/0022-3727/45/42/425401

    Article  Google Scholar 

  17. Yu Q, Guan P, Qin D, Golden G, Wallace PM (2008) Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett 8(7):1923–1928. doi:10.1021/nl0806163

    Article  CAS  Google Scholar 

  18. Lin YY, Liao JD, Ju YH, Chang CW, Shiau AL (2011) Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus. Nanotechnology 22(18):8. doi:10.1088/0957-4484/22/18/185308

    Article  Google Scholar 

  19. Hamouda F, Sahaf H, Held S, Barbillon G, Gogol P, Moyen E, Aassime A, Moreau J, Canva M, Lourtioz JM, Hanbucken M, Bartenlian B (2011) Large area nanopatterning by combined anodic aluminum oxide and soft UV-NIL technologies for applications in biology. Microelectron Eng 88(8):2444–2446. doi:10.1016/j.mee.2011.02.013

    Article  CAS  Google Scholar 

  20. Lee SY, Jeon HC, Yang SM (2012) Unconventional methods for fabricating nanostructures toward high-fidelity sensors. J Mater Chem 22(13):5900–5913. doi:10.1039/c2jm16568f

    Article  CAS  Google Scholar 

  21. Barbillon G, Hamouda F, Held S, Gogol P, Bartenlian B (2010) Gold nanoparticles by soft UV nanoimprint lithography coupled to a lift-off process for plasmonic sensing of antibodies. Microelectron Eng 87(5–8):1001–1004. doi:10.1016/j.mee.2009.11.114

    Article  CAS  Google Scholar 

  22. Masson J-F, Gibson KF, Provencher-Girard A (2010) Surface-enhanced Raman spectroscopy amplification with film over etched nanospheres. J Phys Chem C 114(51):22406–22412. doi:10.1021/jp106450y

    Article  CAS  Google Scholar 

  23. Fang C, Frontiera RR, Tran R, Mathies RA (2009) Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy. Nature 462 (7270):200–204. doi:10.1038/nature08527

  24. Klingsporn JM, Sonntag MD, Seideman T, Van Duyne RP (2014) Tip-enhanced Raman spectroscopy with picosecond pulses. J Phys Chem Lett 5(1):106–110. doi:10.1021/jz4024404

    Article  CAS  Google Scholar 

  25. Barchiesi D, Kessentini S, Guillot N, de la Chapelle ML, Grosges T (2013) Localized surface plasmon resonance in arrays of nano-gold cylinders: inverse problem and propagation of uncertainties. Opt Express 21(2):2245–2262. doi:10.1364/OE.21.002245

    Article  Google Scholar 

  26. Caldwell JD, Glembocki O, Bezares FJ, Bassim ND, Rendell RW, Feygelson M, Ukaegbu M, Kasica R, Shirey L, Hosten C (2011) Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors. ACS Nano 5(5):4046–4055. doi:10.1021/nn200636t

    Article  CAS  Google Scholar 

  27. Hohenau A, Krenn JR, Garcia-Vidal FJ, Rodrigo SG, Martin-Moreno L, Beermann J, Bozhevolnyi SI (2007) Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films. Phys Rev B 75(8):085104. doi:10.1103/PhysRevB.75.085104

    Article  Google Scholar 

  28. Hohenau A, Krenn JR, Beermann J, Bozhevolnyi SI, Rodrigo SG, Martin-Moreno L, Garcia-Vidal F (2006) Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: experiment and theory. Phys Rev B 73(15):155404. doi:10.1103/PhysRevB.73.155404

    Article  Google Scholar 

  29. Hohenau A, Krenn JR, Garcia-Vidal FJ, Rodrigo SG, Martin-Moreno L, Beermann J, Bozhevolnyi SI (2007) Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film. J Opt A Pure Appl Opt 9(9):S366. doi:10.1088/1464-4258/9/9/S14

  30. Aassime A, Hamouda F, Richardt I, Bayle F, Pillard V, Lecoeur P, Aubert P, Bouchier D (2013) Anti-charging process for electron beam observation and lithography. Microelectron Eng 110:320–323. doi:10.1016/j.mee.2013.02.036

    Article  CAS  Google Scholar 

  31. Wang Y, Abb M, Boden SA, Aizpurua J, de Groot CH, Muskens OL (2013) Ultrafast nonlinear control of progressively loaded, single plasmonic nanoantennas fabricated using helium ion milling. Nano Lett 13(11):5647–5653. doi:10.1021/nl403316z

    Article  CAS  Google Scholar 

  32. Iriarte GF, Rodriguez-Madrid JG, Calle F (2012) Fabrication of sub-100 nm IDT SAW devices on insulating, semiconducting and conductive substrates. J Mater Process Technol 212(3):707–712. doi:10.1016/j.jmatprotec.2011.08.007

    Article  CAS  Google Scholar 

  33. Zhou Q, Liu Y, He Y, Zhang Z, Zhao Y (2010) The effect of underlayer thin films on the surface-enhanced Raman scattering response of Ag nanorod substrates. Appl Phys Lett 97(12), 121902. doi:10.1063/1.3489973

    Article  Google Scholar 

  34. Cottat M, Lidgi-Guigui N, Tijunelyte I, Barbillon G, Hamouda F, Gogol P, Aassime A, Lourtioz J-M, Bartenlian B, de la Chapelle M (2014) Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection. Nanoscale Res Lett 9(1):623. doi:10.1186/1556-276X-9-623

    Article  Google Scholar 

  35. Chu Y, Banaee MG, Crozier KB (2010) Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies. ACS Nano 4(5):2804–2810. doi:10.1021/nn901826q

    Article  CAS  Google Scholar 

  36. Mandal P, Ramakrishna SA (2011) Dependence of surface enhanced Raman scattering on the plasmonic template periodicity. Opt Lett 36(18):3705–3707. doi:10.1364/OL.36.003705

    Article  CAS  Google Scholar 

  37. Mandal P, Nandi A, Ramakrishna SA (2012) Propagating surface plasmon resonances in two-dimensional patterned gold-grating templates and surface enhanced Raman scattering. J Appl Phys 112(4), 044314. doi:10.1063/1.4748180

    Article  Google Scholar 

  38. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297. doi:10.1146/annurev.physchem.58.032806.104607

    Article  CAS  Google Scholar 

  39. Aroca R (2006) Surface enhanced vibrational spectroscopy, John Wiley & Sons, Chichester, Ltd. doi:10.1002/9780470035641

  40. Le Ru EC, Grand J, Félidj N, Aubard J, Lévi G, Hohenau A, Krenn JR, Blackie E, Etchegoin PG (2008) Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: polarization effects. J Phys Chem C 112(22):8117–8121. doi:10.1021/jp802219c

    Article  Google Scholar 

  41. Sarkar M, Besbes M, Moreau J, Bryche J-F, Olivéro A, Barbillon G, Coutrot A-L, Bartenlian B, Canva M (2015) Hybrid plasmonic mode by resonant coupling of localized plasmons to propagating plasmons in a Kretschmann configuration. ACS Photonics 2(2):237–245. doi:10.1021/ph500351b

    Article  CAS  Google Scholar 

  42. Chu Y, Crozier KB (2009) Experimental study of the interaction between localized and propagating surface plasmons. Opt Lett 34(3):244–246. doi:10.1364/OL.34.000244

    Article  CAS  Google Scholar 

  43. Live LS, Dhawan A, Gibson KF, Poirier-Richard H-P, Graham D, Canva M, Vo-Dinh T, Masson J-F (2012) Angle-dependent resonance of localized and propagating surface plasmons in microhole arrays for enhanced biosensing. Anal Bioanal Chem 404(10):2859–2868. doi:10.1007/s00216-012-6195-0

    Article  CAS  Google Scholar 

  44. Guillot N, Shen H, Fremaux B, Peron O, Rinnert E, Toury T, de la Chapelle ML (2010) Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength. Appl Phys Lett 97(2), 023113. doi:10.1063/1.3462068

    Article  Google Scholar 

  45. Shen H, Guillot N, Rouxel J, Lamy de la Chapelle M, Toury T (2012) Optimized plasmonic nanostructures for improved sensing activities. Opt Express 20(19):21278–21290. doi:10.1364/OE.20.021278

    Article  CAS  Google Scholar 

  46. Bryche JF, Gillibert R, Barbillon G, Sarkar M, Coutrot AL, Hamouda F, Aassime A, Moreau J, de la Chapelle ML, Bartenlian B, Canva M (2015) Density effect of gold nanodisks on the SERS intensity for a highly sensitive detection of chemical molecules. J Mater Sci 50(20):6601–6607. doi:10.1007/s10853-015-9203-x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge ANR P2N (ANR-12-NANO-0016) and the support of the French Government for partial funding of the project in which this work takes place. This work was partly supported by the French RENATECH network. IOGS/CNRS is also part of the European Network of Excellence in BioPhotonics, Photonics for Life, P4L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Bryche.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Figure S1

(DOCX 83 kb)

Figure S2

(DOCX 601 kb)

Figure S3

(DOCX 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bryche, JF., Gillibert, R., Barbillon, G. et al. Plasmonic Enhancement by a Continuous Gold Underlayer: Application to SERS Sensing. Plasmonics 11, 601–608 (2016). https://doi.org/10.1007/s11468-015-0088-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0088-y

Keywords

Navigation