Skip to main content
Log in

Tunable Plasmonic Resonances in the Hexagonal Nanoarrays of Annular Aperture for Biosensing

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we demonstrate a nanostructure sensor based on hexagonal arrays of annular aperture operating in the near-infrared wavelength range. The strong coupling interaction between propagating surface plasmons (PSP) mode and localized surface plasmons (LSP) mode in the designed structure generates two sharp spectral features under normal incidence. The mode coupling strongly enhances the electromagnetic fields and increases the interaction volume of the analyte and optical field. A high refractive index sensitivity of 623 nm/RIU is demonstrated in a wide refractive index range of 1.33 to 1.40. Due to the excitation of sharp spectral feature, as narrow as 7 nm, high figure of merits of 93 was obtained in the refractive index range, which is nearly 10 times larger than that from hole arrays and disk arrays. Furthermore, sharp spectral feature in the designed structure provides more error margin for structure parameters, which is advantageous for experimental realization of systems without requiring challenging fabrication resolution. The sensor is promising for biosensing applications with high sensitivity and low limit of detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1(11):641–648

    Article  CAS  Google Scholar 

  2. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342–2348

    Article  CAS  Google Scholar 

  3. Wang J, Yang L, Boriskina S, Yan B, Reinhard BM (2011) Spectroscopic ultra-trace detection of nitroaromatic gas vapor on rationally designed two-dimensional nanoparticle cluster arrays. Anal Chem 83(6):2243–2249

    Article  CAS  Google Scholar 

  4. Zhang Y, Wang J, Shen JF, Man Z, Shi W, Min C, Yuan G, Zhu S, Urbach HP, Yuan X (2014) Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface. Nano Lett 14(11):6430–6436

    Article  CAS  Google Scholar 

  5. Hao F, Nordlander P, Sonnefraud Y, Dorpe PV, Maier SA (2009) Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 3(3):643–652

    Article  CAS  Google Scholar 

  6. Liu CH, Hong MH, Cheung HW, Zhang F, Huang ZQ, Tan LS, Hor TSA (2008) Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance. Opt Express 16(14):10701–10709

    Article  CAS  Google Scholar 

  7. Stewat ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494–521

    Article  CAS  Google Scholar 

  8. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857

    Article  CAS  Google Scholar 

  9. Brolo AG (2012) Plasmonics for future biosensors. Nat Photonics 6(11):709–713

    Article  CAS  Google Scholar 

  10. Laesson EM, Alegret J, Kall M, Sutherland DS (2007) Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 7(5):1256–1263

    Article  CAS  Google Scholar 

  11. Kim S, Jun JM, Choi DG, Jung HT, Yang SM (2006) Patterned arrays of Au rings for localized surface plasmon resonance. Langmuir 22(17):7109–7112

    Article  CAS  Google Scholar 

  12. Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8(11):67–871

    Article  CAS  Google Scholar 

  13. Zheng YB, Yang YW, Jensen L, Fang L, Juluri BK, Flood AH, Weiss PS, Stoddart JF, Huang TJ (2009) Active molecular plasmonics: controlling plasmon resonances with molecular switches. Nano Lett 9(2):819–825

    Article  CAS  Google Scholar 

  14. Lassiter JB, Aizpurua J, Hernandez L, Brandl DW, Romero I, Lal S, Hafner JH, Nordlander P, Halas NJ (2008) Close encounters between two nanoshells. Nano Lett 8(4):1212–1218

    Article  CAS  Google Scholar 

  15. Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ (2010) Fano resonances in plasmonic nanoclusters: geometrical and chemical tenability. Nano Lett 10(8):3184–3189

    Article  CAS  Google Scholar 

  16. Zhao W, Jiang Y (2015) Experimental demonstration of sharp Fano resonance within binary gold nanodisk array through lattice coupling effects. Opt Lett 40(1):93–96

    Article  CAS  Google Scholar 

  17. Fedotov VA, Tsiatmas A, Shi JH, Buckingham R, de Groot P, Chen Y, Wang S, Zheludev NI (2010) Temperature control of Fano resonances and transmission in superconducting metamaterials. Opt Express 18(9):9015–9019

    Article  CAS  Google Scholar 

  18. Lu H, Liu XM, Mao D, Wang GX (2012) Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt Lett 37(18):3780–3782

    Article  Google Scholar 

  19. Moritake Y, Kanamori Y, Hane K (2014) Experimental demonstration of sharp Fano resonance in optical metamaterials composed of asymmetric double bars. Opt Lett 39(13):4057–4060

    Article  Google Scholar 

  20. Rahmani M, Luk’yanchuk B, Ng B, Tavakkoli A, Liew YF, Hong MH (2011) Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers. Opt Express 19(6):4949–4956

    Article  CAS  Google Scholar 

  21. Rahmani M, Luk’yanchuk B, Hong MH (2013) Fano resonance in novel plasmonic nanostructures. Laser Photonics Rev 7(3):329–349

    Article  CAS  Google Scholar 

  22. Cetin AE, Altug H (2012) Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. ACS Nano 6(11):9989–9995

    Article  CAS  Google Scholar 

  23. Shen Y, Zou J, Liu T, Tao Y, Jiang R, Liu M, Xiao G, Zhu J, Zhou Z, Wang X, Jin C, Wang J (2013) Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 4:2381

    Google Scholar 

  24. Si GY, Zhao Y, Liu H, Teo S, Zhang M, Huang TJ, Danner AJ, Teng JH (2011) Annular aperture array based color filter. Appl Phys Lett 99(3):033105

    Article  CAS  Google Scholar 

  25. Liu YJ, Si GY, Leong ESP, Xiang N, Danner AJ, Teng JH (2012) Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays. Adv Mater 24(23):OP131–OP135

    Article  CAS  Google Scholar 

  26. Khajavikhan M, Simic A, Katz M, Lee JH, Slutsky B, Mizrahi A, Lomakin V, Fainman Y (2012) Thresholdless nanoscale coaxial lasers. Nature 482(7384):204–207

    Article  CAS  Google Scholar 

  27. Dahdah J, Hoblos J, Baida FI (2012) Nanocoaxial waveguide grating as quarter-wave plates in the visible range. IEEE Photonics J 4(1):87–94

    Article  Google Scholar 

  28. Ni H, Wang M, Shen T, Zhou J (2015) Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing. ACS Nano 9(2):1913–1925

    Article  CAS  Google Scholar 

  29. Feng HY, Luo F, Kekesi R, Granados D, Meneses-Rodriguez D, Garcia JM, Garcia-Martin A, Armelles G, Cebollada A (2014) Magnetoplasmonic nanorings as novel architectures with tunable magneto-optical activity in wide wavelength ranges. Adv Optical Mater 2(7):612–617

    Article  CAS  Google Scholar 

  30. Yang J, Luo FF, Kao TS, Li X, Ho GW, Teng JH, Luo XG, Hong MH (2014) Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing. Light Sci Appl 3:e185

    Article  CAS  Google Scholar 

  31. Lumerical Solutions. http://www.lumerical.com.

  32. Rodrigo SG, García-Vidal FJ, Martín-Moreno L (2008) Influence of material properties on extraordinary optical transmission through hole arrays. Phys Rev B 77(7):075401

    Article  CAS  Google Scholar 

  33. Dossou K, Packirisamy M, Fontaine M (2005) Analysis of diffraction gratings by using an edge element method. J Opt Soc Am A 22(2):278–288

    Article  Google Scholar 

  34. Couture M, Liang Y, Richard HPP, Faid R, Peng W, Masson JF (2013) Tuning the 3D plasmon field of nanohole arrays. Nanoscale 5(24):12399–12408

    Article  CAS  Google Scholar 

  35. White IM, Fan X (2008) On the performance quantification of resonant refractive index sensors. Opt Express 16(2):1020–1028

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank financial supports from the National Nature Science Foundation of China (Grant Nos. 11474043 and 61137005), the Doctoral Scientific Fund Project of the State Education Committee of China (Grant No. SRFDP-20120041110040), and the Fundamental Research Funds for the Central Universities, Dalian University of Technology (Grant No. DUT14ZD211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Lu, M., Chu, S. et al. Tunable Plasmonic Resonances in the Hexagonal Nanoarrays of Annular Aperture for Biosensing. Plasmonics 11, 205–212 (2016). https://doi.org/10.1007/s11468-015-0041-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0041-0

Keywords

Navigation