Skip to main content
Log in

Controlling Diffraction of Surface Plasmon Polaritons in Nanoscale Metal Waveguide Arrays

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In the paper, we investigate the feasibility of restraining the diffraction of propagating surface plasmon polaritons in nanoscale metal waveguide arrays (MWGAs). Based on the dispersion relation of MWGAs, two methods, tailoring the input end interface of the MWGAs and the surrounding medium and augmenting the wave vector of exciting light by auxiliary MWGAs, are proposed to excite the non-diffraction mode of MWGAs. All theoretical predictions are well demonstrated by the finite-difference time-domain numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Durnin J, Miceli J, Eberly JH (1987) Diffraction-free beams. Phys Rev Lett 58:1499–1501

    Article  Google Scholar 

  2. Berry MV, Balazs NL (1979) Nonspreading wave packets. Am J Phys 47:264–267

    Article  Google Scholar 

  3. Siviloglou GA, Broky J, Dogariu A, Christodoulides DN (2007) Observation of accelerating Airy beams. Phys Rev Lett 99:213901–213904

    Article  CAS  Google Scholar 

  4. Broky J, Siviloglou GA, Dogariu A, Christodoulides DN (2008) Self-healing properties of optical Airy beams. Opt Express 16:12880–12891

    Article  Google Scholar 

  5. Baumgartl J, Mazilu M, Dholakia K (2008) Optically mediated particle clearing using Airy wavepackets. Nat Photonics 2:675–678

    Article  CAS  Google Scholar 

  6. Zhang P, Wang S, Liu Y, Yin X, Lu C, Chen Z, Zhang X (2011) Plasmonic Airy beams with dynamically controlled trajectories. Opt Lett 36:3191–3193

    Article  Google Scholar 

  7. Minovich A, Klein A, Janunts N, Pertsch T, Neshev DN, Kivshar YS (2011) Generation and near-field imaging of Airy surface plasmons. Phys Rev Lett 107:116802

    Article  Google Scholar 

  8. Abdollahpour D, Suntsov S, Papazoglou DG, Tzortzakis S (2010) Spatiotemporal Airy light bullets in the linear and nonlinear regimes. Phys Rev Lett 105:253901

    Article  Google Scholar 

  9. Pertsch T, Zentgraf T, Peschel U, Brauer A, Lederer F (2002) Anomalous refraction and diffraction in discrete optical systems. Phys Rev Lett 88:093901

    Article  CAS  Google Scholar 

  10. Eisenberg HS, Silberberg Y, Morandotti R, Aitchison JS (2000) Diffraction management. Phys Rev Lett 85:1863–1866

    Article  CAS  Google Scholar 

  11. Longhi S (2009) Rectification of light refraction in curved waveguide arrays. Opt Lett 34:458–460

    Article  Google Scholar 

  12. Staliunas K, Masoller C (2006) Subdiffractive light in bi-periodic arrays of modulated fibers. Opt Express 14:10669–10677

    Article  CAS  Google Scholar 

  13. Eisenberg HS, Silberberg Y, Morandotti R, Boyd AR, Aitchison JS (1998) Discrete spatial optical solitons in waveguide arrays. Phys Rev Lett 81:3383–3386

    Article  CAS  Google Scholar 

  14. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  15. Sun Z, Kim HK (2004) Refractive transmission of light and beam shaping with metallic nano-optic lenses. Appl Phys Lett 85:642–644

    Article  CAS  Google Scholar 

  16. Wang B, Wang GP (2004) Metal heterowaveguides for nanometric focusing of light. Appl Phys Lett 85:3599–3601

    Article  CAS  Google Scholar 

  17. Tanaka K, Tanaka M (2003) Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Appl Phys Lett 82:1158–1160

    Article  CAS  Google Scholar 

  18. Wang B, Wang GP (2004) Surface plasmon polariton propagation in nanoscale metal gap waveguides. Opt Lett 29:1992–1994

    Article  Google Scholar 

  19. Fan X, Wang GP (2006) Nanoscale metal waveguide arrays as plasmon lenses. Opt Lett 31:1322–1324

    Article  Google Scholar 

  20. Fan X, Wang GP, Lee JC, Chan CT (2006) All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration. Phys Rev Lett 97:073901

    Article  Google Scholar 

  21. Conforti M, Guasoni M, De Angelis C (2008) Subwavelength diffraction management. Opt Lett 33:2662–2664

    Article  Google Scholar 

  22. Della Valle G, Longhi S (2010) Subwavelength diffraction control and self-imaging in curved plasmonic waveguide arrays. Opt Lett 35:673–675

    Article  CAS  Google Scholar 

  23. Guasoni M, Conforti M, De Angelis C (2010) Light propagation in nonuniform plasmonic subwavelength waveguide arrays. Opt Commun 283:1161–1168

    Article  CAS  Google Scholar 

  24. Jacob Z, Alekseyev LV, Narimanov E (2006) Optical hyperlens: far-field imaging beyond the diffraction limit. Opt Express 14:8247–8256

    Article  Google Scholar 

  25. Liu Z, Lee H, Xiong Y, Sun C, Zhang X (2007) Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315:1686

    Article  CAS  Google Scholar 

  26. Li L, Li T, Wang SM, Zhang C, Zhu SN (2011) Plasmonic Airy beam generated by in-plane diffraction. Phys Rev Lett 107:126804

    Article  CAS  Google Scholar 

  27. Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans Antennas Propag 14:302–307

    Article  Google Scholar 

  28. Somekh S, Garmire E, Yariv A, Garvin HL, Hunsperger RG (1973) Channel optical waveguide directional couplers. Appl Phys Lett 22:46–47

    Article  CAS  Google Scholar 

  29. Palik ED (ed) (1985) Handbook of optical constants of solids. Academi, New York

    Google Scholar 

  30. Raether H (1988) Surface plasmons. Springer-Verlag, Berlin

    Google Scholar 

  31. Mur G (1981) Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Trans Electromagn Compat 23:377–382

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Nature Science Foundation of China (Grant No. 61205166 and J1210061).

Compliance with Ethical Standards

Funding

This study was funded by the National Nature Science Foundation of China (Grant No. 61205166 and J1210061).

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Hu, W., Wei, J. et al. Controlling Diffraction of Surface Plasmon Polaritons in Nanoscale Metal Waveguide Arrays. Plasmonics 11, 117–124 (2016). https://doi.org/10.1007/s11468-015-0014-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0014-3

Keywords

Navigation