Skip to main content
Log in

Spatial Splitting and Coupling of the Edge Modes in the Graphene Bend Waveguide

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The spatial splitting and coupling between the edge modes in the graphene bend-ribbon waveguide are presented in this paper. We reveal a new phenomenon that the edge modes spatially split with the strongly confined even (odd) symmetric modal field shifts to the exterior (interior) edge of the waveguide, which is in stark contrast with conventional bend waveguide. Periodical couplings between the two edge modes due to the spatial splitting phenomenon have been described using the coupled mode theory. The theoretical results of coupled power and critical angles under different bend angles, waveguide widths, or chemical potentials are consistent with numerical simulations. Numerical calculations show that the bend-ribbon waveguide could achieve superior wave guiding with nearly no bending loss or field shift at smaller waveguide width, larger bend radius, or higher chemical potential. This work may provide a new perspective to understand the bending loss and modal coupling in the graphene bend-ribbon waveguide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  2. Boltasseva A, Atwater HA (2011) Materials science. Low-loss plasmonic metamaterials. Science 331(6015):290–291

    Article  CAS  Google Scholar 

  3. He Y, He S, Yang X (2012) Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials. Opt Lett 37(14):2907–2909

    Article  CAS  Google Scholar 

  4. Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2(8):496–500

    Article  CAS  Google Scholar 

  5. Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98(1):011101

    Article  Google Scholar 

  6. Barrelet CJ, Greytak AB, Lieber CM (2004) Nanowire photonic circuit elements. Nano Lett 4(10):1981–1985

    Article  CAS  Google Scholar 

  7. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200

    Article  CAS  Google Scholar 

  8. Castro Neto AH, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162

    Article  CAS  Google Scholar 

  9. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4(9):611–622

    Article  CAS  Google Scholar 

  10. Koppens FH, Chang DE, Garcia de Abajo FJ (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11(8):3370–3377

    Article  CAS  Google Scholar 

  11. Nikitin AY, Guinea F, García-Vidal FJ, Martín-Moreno L (2011) Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys Rev B 84(16)

  12. Lu WB, Zhu W, Xu HJ, Ni ZH, Dong ZG, Cui TJ (2013) Flexible transformation plasmonics using graphene. Opt Express 21(9):10475–10482

    Article  CAS  Google Scholar 

  13. Gomez-Diaz JS, Perruisseau-Carrier J (2013) Graphene-based plasmonic switches at near infrared frequencies. Opt Express 21(13):15490–15504

    Article  CAS  Google Scholar 

  14. Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332(6035):1291–1294

    Article  CAS  Google Scholar 

  15. Li H-J, Wang L-L, Huang Z-R, Sun B, Zhai X (2014) Tunable mid-infrared plasmonic anti-symmetric coupling resonator based on the parallel interlaced graphene pair. Plasmonics:6

  16. Li H-J, Wang L-L, Liu J-Q, Huang Z-R, Sun B, Zhai X (2013) Investigation of the graphene based planar plasmonic filters. Appl Phys Lett 103(21):211104

    Article  Google Scholar 

  17. Midrio M, Boscolo S, Moresco M, Romagnoli M, De Angelis C, Locatelli A, Capobianco AD (2012) Graphene-assisted critically-coupled optical ring modulator. Opt Express 20(21):23144–23155

    Article  CAS  Google Scholar 

  18. Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103(6):064302

    Article  Google Scholar 

  19. Nikitin AY, Alonso-Gonzalez P, Hillenbrand R (2014) Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials. Nano Lett 14(5):2896–2901

    Article  CAS  Google Scholar 

  20. Chen J, Badioli M, Alonso-Gonzalez P, Thongrattanasiri S, Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A, Godignon P, Elorza AZ, Camara N, Garcia de Abajo FJ, Hillenbrand R, Koppens FH (2012) Optical nano-imaging of gate-tunable graphene plasmons. Nature 487(7405):77–81

    CAS  Google Scholar 

  21. Falkovsky LA (2008) Optical properties of graphene and IV–VI semiconductors. Phys Usp 51(9):887–897

    Article  CAS  Google Scholar 

  22. Gao W, Shu J, Qiu C, Xu Q (2012) Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6(9):7806–7813

    Article  CAS  Google Scholar 

  23. Zhu B, Ren G, Zheng S, Lin Z, Jian S (2013) Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices. Opt Express 21(14):17089–17096

    Article  Google Scholar 

  24. Jablan M, Buljan H, Soljacic M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80(24):7

    Article  Google Scholar 

  25. Stauber T, Peres N, Castro Neto A (2008) Conductivity of suspended and non-suspended graphene at finite gate voltage. Phys Rev B 78(8)

  26. Gusynin VP, Sharapov SG, Carbotte JP (2009) On the universal ac optical background in graphene. New J Phys 11(9):095013

    Article  Google Scholar 

  27. Stauber T, Peres NMR (2008) Effect of Holstein phonons on the electronic properties of graphene. J Phys: Condens Matter 20(5):055002

    Google Scholar 

  28. Carbotte JP, Nicol EJ, Sharapov SG (2010) Effect of electron-phonon interaction on spectroscopies in graphene. Phys Rev B 81(4)

  29. Wang WH, Kinaret JM (2013) Plasmons in graphene nanoribbons: interband transitions and nonlocal effects. Phys Rev B 87(19)

  30. Stauber T, Peres NMR, Geim AK (2008) Optical conductivity of graphene in the visible region of the spectrum. Phys Rev B 78(8)

  31. Thongrattanasiri S, Manjavacas A, Garcia de Abajo FJ (2012) Quantum finite-size effects in graphene plasmons. ACS Nano 6(2):1766–1775

    Article  CAS  Google Scholar 

  32. Zhu X, Yan W, Mortensen NA, Xiao S (2013) Bends and splitters in graphene nanoribbon waveguides. Opt Express 21(3):3486–3491

    Article  CAS  Google Scholar 

  33. Baggett JC, Monro TM, Furusawa K, Finazzi V, Richardson DJ (2003) Understanding bending losses in holey optical fibers. Opt Commun 227(4–6):317–335

    Article  CAS  Google Scholar 

  34. Yariv A (1975) Quantum electronics

  35. Wang B, Zhang X, Yuan X, Teng J (2012) Optical coupling of surface plasmons between graphene sheets. Appl Phys Lett 100(13):131111

    Article  Google Scholar 

  36. Si LM, Jiang T, Chang KH, Chen TC, Lv X, Ran LX, Xin H (2011) Active microwave metamaterials incorporating ideal gain devices. Materials 4(1):73–83

    Article  CAS  Google Scholar 

  37. Jiang T, Zhang Q, Feng Y (2009) Compensating loss with gain in slow-light propagation along slab waveguide with anisotropic metamaterial cladding. Opt Lett 34(24):3869–3871

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 61178008, 61275092), and the Fundamental Research Funds for the Central Universities, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guobin Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Ren, G., Gao, Y. et al. Spatial Splitting and Coupling of the Edge Modes in the Graphene Bend Waveguide. Plasmonics 10, 745–751 (2015). https://doi.org/10.1007/s11468-014-9861-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9861-6

Keywords

Navigation