Skip to main content
Log in

Design of a Broadband Plasmonic Unequal-Power Splitter with a Rectangular Ring Resonator

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We proposed a novel method to design a broadband plasmonic unequal-power splitter with a rectangular ring resonator directly connected to the input and output waveguides. By properly assigning the locations of the input and output waveguides, the splitting ratio is controlled by manipulating the output waveguide widths while the reflectance is eliminated by adjusting the input waveguide width without varying any other design parameters. To obtain the design parameters of the input and output waveguide widths, analytical expressions of the splitting ratio and the reflectance are established by using the equivalent circuit based on the transmission line model. Design examples of unequal-power splitters with splitting ratio of 0.5 are numerically demonstrated. The analysis based on equivalent circuit is well confirmed by the finite difference time domain simulation. The simulated results show that the unequal-power splitters have a flat and wide band over the wavelength range from 1500 nm to 1600 nm by using a compact rectangular ring resonator with the dimensions of 550 nm × 275 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tao S, Yang B, Xia H, Wang H, Lo GQ (2011) An optical power splitter with variable power splitting ratio. IEEE Photon Technol Lett 23(14):1004–1006

    Article  Google Scholar 

  2. Lagali NS, Paiam MR, MacDonald RI, Wörhoff K, Driessen A (1999) Analysis of generalized Mach-Zehnder interferometers for variable-ratio power splitting and optimized switching. J Lightw Technol 17(12):2542–2550

    Article  Google Scholar 

  3. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):183–193

    Article  Google Scholar 

  4. Wang J, Guan X, He Y, Shi Y, Wang Z, He S, Holmström P, Wosinski L, Thylen L, Dai D (2011) Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides. Opt Express 19(2):838–847

    Article  CAS  Google Scholar 

  5. Wang Y, Zhang X, Wang J, Liu J, Wang Y, Yang K, Song Y (2010) Manipulating surface plasmon polaritons in a 2-D T-shaped metal-insulator-metal plasmonic waveguide with a joint cavity. IEEE Photon Technol Lett 22(17):1309–1311

    Article  CAS  Google Scholar 

  6. Song Y, Wang J, Yan M, Qiu M (2011) Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter. J Opt 13:075002

    Article  Google Scholar 

  7. Guo Y, Yan L, Pan W, Luo B, Wen K, Guo Z, Li H, Luo X (2011) A plasmonic splitter based on slot cavity. Opt Express 19(15):13831–13838

    Article  Google Scholar 

  8. Nozhat N, Granpayeh N (2011) Analysis of the plasmonic power splitter and MUX/DEMUS suitable for photonic integrated circuits. Optics Commun 284:3449–3455

    Article  CAS  Google Scholar 

  9. Reiserer AA, Huang J-S, Hecht B, Brixner T (2010) Subwavelength broadband splitters and switches for femtosecond plasmonic signals. Opt Express 18(11):11810–11820

    Article  Google Scholar 

  10. Bahadori M, Eshaghian A, Hodaei H, Rezaei M, Mehrany K (2013) Analysis and design of optical demultiplexer based on arrayed plasmonic slot cavities: transmission line model. IEEE Photon Technol Lett 25(8):784–786

    Article  Google Scholar 

  11. Nejati H, Beirami A (2012) Theoretical analysis of the characteristic impedance in metal-insulator-metal plasmonic transmission lines. Opt Lett 37(6):1050–1052

    Article  CAS  Google Scholar 

  12. Chang K, Hsieh LH (2004) Microwave ring circuits and related structures, 2nd edn. Wiley, New York

    Book  Google Scholar 

  13. Chang Y, Chen CH (2014) Broadband plasmonic bandstop filters with a single rectangular ring resonator. IEEE Photon Technol Lett 26(19):1960–1963

    Article  Google Scholar 

  14. Sadiku A (2000) Fundamentals of electric circuits, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  15. Johnson PB, Christy RW (1971) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  Google Scholar 

  16. Pozar DM (2012) Microwave engineering, 4th edn. John Wiley & Sons, Inc, New Jersey

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhsin Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y., Chen, CH. Design of a Broadband Plasmonic Unequal-Power Splitter with a Rectangular Ring Resonator. Plasmonics 10, 739–743 (2015). https://doi.org/10.1007/s11468-014-9860-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9860-7

Keywords

Navigation