Skip to main content
Log in

Extraordinary Optical Transmission of Broadband Through Tapered Multilayer Slits

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The nonresonant, enhanced optical transmission of subwavelength metallic slits on a thin film is significant in broadband light harvesting devices. To improve transmission efficiency, this paper established tapered multilayer slits in which thin dielectric layers are sandwiched between two metallic layers. The transmission properties of these slits are then investigated using the finite element method. Results show that transmission is improved in the tapered multilayer slits relative to that in the tapered monolayer slits. The effects of structural parameters on these transmission properties are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    Article  CAS  Google Scholar 

  2. Gray SK (2007) Surface plasmon-enhanced spectroscopy and photochemistry. Plasmonics 2:143–146

    Article  CAS  Google Scholar 

  3. Dahlin A, Zach M, Rindzevicius T, Kall M, Sutherland DS, Hook F (2005) Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J Am Chem Soc 127:5043

    Article  CAS  Google Scholar 

  4. Karabchevsky A, Krasnykov O, Auslender M, Hadad B, Goldner A, Abdulhalim I (2009) Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment. Plasmonics 4:281–292

    Article  CAS  Google Scholar 

  5. Shahmansouri A, Rashidian B (2013) Enhanced optical transmission through metallic holes array: role of TE polarization in SPP excitation. Plasmonics 8:403–409

    Article  CAS  Google Scholar 

  6. Wang YK, Qin Y, Zhang ZY (2014) Extraordinary optical transmission property of X-shaped plasmonic nanohole arrays. Plasmonics 9:203–207

    Article  CAS  Google Scholar 

  7. Huang LL, Chen XZ, Bai BF, Tan QF, Jin GF, Zentgraf T, Zhang S (2013) Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light: Sci Appl 2:e70

    Article  Google Scholar 

  8. Ghaemi HF, Thio T, Grupp DE, Ebbesen TW, Lezec HJ (1998) Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B 58:6779–6782

    Article  CAS  Google Scholar 

  9. Holman ZC, Wolf SD, Ballif C (2013) Improving metal reflectors by suppressing surface plasmon polaritons: a priori calculation of the internal reflectance of a solar cell. Light: Sci Appl 2:e106

    Article  Google Scholar 

  10. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39

    Article  CAS  Google Scholar 

  11. Barnes WL, Murray WA, Dintinger J, Devaux E, Ebbesen TW (2004) Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys Rev Lett 92:107401

    Article  CAS  Google Scholar 

  12. Sun Q, Ueno K, Yu K, Kubo A, Matsuo Y, Misawa H (2013) Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy. Light: Sci Appl 2:e118

    Article  CAS  Google Scholar 

  13. Ortuño R, García-Meca C, Rodríguez Fortuño FJ, Martí J, Martínez A (2009) Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays. Phys Rev B 79:075425

    Article  Google Scholar 

  14. Najiminaini M, Vasefi F, Kaminska B, Carson JJL (2013) A three-dimensional plasmonic nanostructure with extraordinary optical transmission. Plasmonics 8:217–224

    Article  CAS  Google Scholar 

  15. Klein Koerkamp KJ, Enoch S, Segerink FB, van Hulst NF, Kuipers L (2004) Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. Phys Rev Lett 92:183901

    Article  Google Scholar 

  16. Gordon R, Brolo AG, McKinnon A, Rajora A, Leathem B, Kavanagh KL (2004) Strong polarization in the optical transmission through elliptical nanohole arrays. Phys Rev Lett 92:037401

    Article  CAS  Google Scholar 

  17. Degiron A, Ebbesen TW (2005) The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures. J Opt A Pure Appl Opt 7:S90–S96

    Article  Google Scholar 

  18. Parsons J, Hendry E, Burrows CP, Auguié B, Sambles JR, Barnes WL (2009) Localized surface-plasmon resonance in periodic nondiffracting metallic nanoparticle and nanohole arrays. Phys Rev B 79:073412

    Article  Google Scholar 

  19. Lovera P, Jones D, Corbett B, O’Riordan A (2012) Polarization tunable transmission through plasmonic arrays of elliptical nanopores. Opt Express 20:25325

    Article  CAS  Google Scholar 

  20. Bao YJ, Peng RW, Shu DJ, Wang M, Lu X, Shao J, Lu W, Ming NB (2008) Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array. Phys Rev Lett 101:087401

  21. Lin L, Roberts A (2011) Light transmission through nanostructured metallic films: coupling between surface waves and localized resonances. Opt Express 19:2626–2633

    Article  CAS  Google Scholar 

  22. Rodrigo SG, Mahboub O, Degiron A, Genet C, Garcia-Vidal FJ, Martin-Moreno L, Ebbesen TW (2010) Holes with very acute angles: a new paradigm of extraordinary optical transmission through strongly localized modes. Opt Express 18:23691–23697

    Article  CAS  Google Scholar 

  23. Xu JJ, Guan P, Kvasnicka P, Gong H, Homola J, Yu QM (2011) Light transmission and surface-enhanced Raman scattering of quasi-3D plasmonic nanostructure arrays with deep and shallow Fabry-Perot nanocavities. J Phys Chem C 115:10996–11002

    Article  CAS  Google Scholar 

  24. Ruan Z, Qiu M (2006) Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Phys Rev Lett 96:233901

    Article  Google Scholar 

  25. Marani R, Marrocco V, Grande M, Morea G, D’Orazio A, Petruzzelli V (2011) Enhancement of extraordinary optical transmission in a double heterostructure plasmonic bandgap cavity. Plasmonics 6:469–476

    Article  CAS  Google Scholar 

  26. Subramania G, Foteinopoulou S, Brener I (2011) Nonresonant broadband funneling of light via ultrasubwavelength channels. Phys Rev Lett 107:163902

    Article  CAS  Google Scholar 

  27. Shen HH, Maes B (2012) Enhanced optical transmission through tapered metallic gratings. Appl Phys Lett 100:241104

    Article  Google Scholar 

  28. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Foundation of China (Grant no. 11004160) and the Fundamental Research Funds for the Central Universities (Grant no. GK201303007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyue Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wang, Y., Luo, L. et al. Extraordinary Optical Transmission of Broadband Through Tapered Multilayer Slits. Plasmonics 10, 547–551 (2015). https://doi.org/10.1007/s11468-014-9839-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9839-4

Keywords

Navigation