Skip to main content

Advertisement

Log in

Optimization of Silver Nanotoroid Arrays for the Absorption Enhancement of Silicon Thin-Film Solar Cells

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The enhancement of absorbed electromagnetic energy of thin-film silicon photovoltaics due to toroid-shaped plasmonic nanoparticles is computationally investigated. Using Ansys® HFSS, infinite arrays of silver nanotoroids of various sizes are tuned to maximize the photocurrent generation of the photovoltaic. The obtained results show that larger nanotoroid arrays can be tuned to provide enhanced photocurrent generation that is comparable to traditional sphere-shaped nanoparticles. The highly tunable nature of the resonant frequencies of plasmonic nanotoroid geometries is investigated here, which hold potential advantage over nanoparticles in their ability to enhance electromagnetic energy absorption in the longer wavelength regime of the solar spectrum. The obtained results show that larger nanotoroid arrays can be tuned to provide enhanced photocurrent generation comparable to traditional nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    Article  CAS  Google Scholar 

  2. Atwater H, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  3. Rechberger W et al (2003) Optical properties of two interacting gold nanoparticles. Opt Commun 220:137–141

    Article  CAS  Google Scholar 

  4. Sendur K (2012) Optical aspects of the interaction of focused beams with plasmonic nanoparticles. Appl Comput Electromagn Soc J 27:181–188

    Google Scholar 

  5. Beck F, Verhagen E, Mokkapati S, Polman A, Catchpole K (2011) Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates. Opt Express 19:A146–A156

    Article  CAS  Google Scholar 

  6. Cao W, Huang T, Xu X, Elsayed-Ali H (2011) Localized surface plasmon resonance of single silver nanoparticles studies by dark-field optical microscopy and spectroscopy. J Appl Phys 109:1–6

    Google Scholar 

  7. Large N et al (2011) Plasmonic properties of gold nano-disk nano-resonators: fine shape details matter. Opt Express 19:5587–5595

    Article  CAS  Google Scholar 

  8. Mary A et al (2007) Optical absorption of torus-shaped metal nanoparticles in the visible range. Phys Rev B 76:1–5

    Google Scholar 

  9. El-Shenawee M (2010) Polarization dependence of plasmonic nanotoroid dimer antenna. IEEE Antennas Propag Lett 9:463–466

    Article  Google Scholar 

  10. Park J, Park N, Varlamov S (2014) Optimum surface condition for plasmonic Ag nanoparticles in polycrystalline silicon thin film solar cells. Appl Phys Lett 104:033903-1-4

    Google Scholar 

  11. Bauer C, Giessen H (2013) Light harvesting enhancement in solar cells with quasicrystalline plasmonic structure. Opt Express 21:A363–A371

    Article  CAS  Google Scholar 

  12. Akimov Y, Koh W (2010) Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells. Nanotechnology 21:1–6

    Article  Google Scholar 

  13. Akimov Y, Koh W (2011) Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells. Plasmonics 6:155–161

    Article  CAS  Google Scholar 

  14. Burford N, El-Shenawee M (2013) Plasmonic enhancement of irregular shape nano-patch for thin film silicon solar cells. Appl Comput Electromagn Soc J 28:359–373

    Google Scholar 

  15. Kazerooni H, Khavasi A (2013) Plasmonic fractals: ultraband light trapping in thin film solar cells by a Sierpinski nanocarpet. Opt Quant Electron 1:1–7

    Google Scholar 

  16. Wang J et al (2010) Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer. Opt Express 18:2682–2694

    Article  CAS  Google Scholar 

  17. Ostfeld A, Pacifici D (2011) Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics. Appl Phys Lett 98:1–3

    Article  Google Scholar 

  18. Lal N et al (2011) Enhancing solar cells with localized plasmons in nanovoids. Opt Express 19:11256–11263

    Article  CAS  Google Scholar 

  19. Burford N, El-Shenawee M (2013) Qualitative measure of photocurrent enhancement in silicon solar cells due to plasmonic antennas. Proc Annu Rev Prog Appl Comput Electromagn 29:233–237

    Google Scholar 

  20. Palik E (1985) Handbook of optical constants of solids. Academic, New York

    Google Scholar 

  21. Lim S, Mar W, Matheu P, Derkacs D, Yu E (2007) Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles. J Appl Phys 101:1–7

    Google Scholar 

  22. Langhammer C, Schwind M, Kasemo B, Zoric I (2008) Localized surface plasmon resonances in aluminum nanodisks. Nano Lett 8:1461–1471

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported mainly through the NSF/ECCS award no. 1006927 and in part through NSF GK12 award no. 0538645, NSF Cyber infrastructure awards EP-0918970 and MRI no. 072265.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Burford.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burford, N., El-Shenawee, M. Optimization of Silver Nanotoroid Arrays for the Absorption Enhancement of Silicon Thin-Film Solar Cells. Plasmonics 10, 225–232 (2015). https://doi.org/10.1007/s11468-014-9799-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9799-8

Keywords

Navigation