Skip to main content
Log in

Application of the Hilbert Transform Method for the Retrieval of the Phase Characteristics of Plasmonic Metal Bragg Gratings

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We demonstrate, with detailed examples, a method to retrieve the phase and group-delay responses of plasmonic metal Bragg gratings (MBGs) from their reflection and transmission spectra. The method is based on the Hilbert transform (HT) that relates the phase and the amplitude spectrum of a minimum-phase system. For the retrieval of the reflection phase, if the propagation loss of the grating is negligible, the method cannot tolerate any asymmetry in the grating profile and thus fails to operate for practical low-loss fiber or dielectric-waveguide Bragg gratings, where the fabrication errors are sufficient to destroy the symmetry requirement. The large propagation loss of the surface plasmon mode, however, makes possible the retrieval of the reflection phase of an MBG that contains a certain degree of asymmetry in the grating profile. For the retrieval of the transmission phase, the symmetry requirement is not an issue, while a large propagation loss can introduce significant errors in the retrieved phase spectrum. It is possible, however, to largely reduce such errors by applying the HT method to the spectrum with the background propagation loss artificially removed. The HT method provides a simple and effective way to obtain the phase and group-delay characteristics of MBGs, which are difficult to measure directly, and can find applications in the development of grating-based plasmonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Burke JJ, Stegeman GI, Tamir T (1986) Surface-polariton-like waves guided by thin, lossy metal films. Phys Rev B 33:5186–5201

    Article  CAS  Google Scholar 

  2. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  3. Lakowicz JR (2006) Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 1:5–33

    Article  CAS  Google Scholar 

  4. Charbonneau R, Lahoud N, Mattiussi G, Berini P (2005) Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons. Opt Express 13:977–984

    Article  Google Scholar 

  5. Boltasseva A, Bozhevolnyi SI (2006) Directional couplers using long-range surface plasmon polariton waveguides. IEEE J Sel Top Quantum 12:1233–1241

    Article  CAS  Google Scholar 

  6. Nikolajsen T, Leosson K, Bozhevolnyi SI (2005) In-line extinction modulator based on long-range surface plasmon polaritons. Opt Commun 244:455–459

    Article  CAS  Google Scholar 

  7. Nikolajsen T, Leosson K, Bozhevolnyi SI (2004) Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl Phys Lett 85:5833–5835

    Article  CAS  Google Scholar 

  8. Jette-Charbonneau S, Charbonneau R, Lahoud N, Mattiussi GA, Berini P (2005) Demonstration of Bragg gratings based on long ranging surface plasmon polariton waveguides. Opt Express 13:4674–4682

    Article  Google Scholar 

  9. Boltasseva A, Bozhevolnyi SI, Nikolajsen T, Leosson K (2006) Compact Bragg gratings for long-range surface plasmon polaritons. J Light Technol 24:912–918

    Article  Google Scholar 

  10. Marano M, Longhi S, Laporta P, Belmonte M, Agogliati B (2001) All-optical square-pulse generation and multiplication at 1.5 μm by use of a novel class of fiber Bragg gratings. Opt Lett 26:1615–1617

    Article  CAS  Google Scholar 

  11. Asghari MH, Azaña J (2009) All-optical Hilbert transformer based on a single phase-shifted fiber Bragg grating: design and analysis. Opt Lett 34:334–336

    Article  Google Scholar 

  12. Li M, Janner D, Yao J, Pruneri V (2009) Arbitrary-order all-fiber temporal differentiator based on a fiber Bragg grating: design and experimental demonstration. Opt Express 17:19798–19807

    Article  CAS  Google Scholar 

  13. Eggleton BJ, Ahuja A, Westbrook PS, Rogers JA, Kuo P, Nielsen TN, Mikkelsen B (2000) Integrated tunable fiber gratings for dispersion management in high-bit rate systems. J Light Technol 18:1418–1432

    Article  Google Scholar 

  14. Longhi S (2005) Group delay tuning in active fiber Bragg gratings: from superluminal to subluminal pulse reflection. Phys Rev E 72:056614

    Article  Google Scholar 

  15. Muriel MA, Carballar A (1997) Phase reconstruction from reflectivity in uniform fiber Bragg gratings. Opt Lett 22:93–95

    Article  CAS  Google Scholar 

  16. Zou B, Chiang KS (2013) Phase retrieval from transmission spectrum for long-period fiber gratings. J Light Technol 31:2223–2229

    Article  Google Scholar 

  17. Poladian L (1997) Group-delay reconstruction for fiber Bragg gratings in reflection and transmission. Opt Lett 22:1571–1573

    Article  CAS  Google Scholar 

  18. Skaar J, Engan HE (1999) Phase reconstruction from reflectivity in fiber Bragg gratings. Opt Lett 24:136–139

    Article  CAS  Google Scholar 

  19. Chen C, Berini P, Feng D, Tanev S, Tzolov V (2000) Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media. Opt Express 7:260–272

    Article  CAS  Google Scholar 

  20. Bienstman P, Baets R (2001) Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers. Opt Quant Electron 33:327–341

    Article  CAS  Google Scholar 

  21. Snyder AW, Love JD (1983) Optical waveguide theory. Chapman and Hall, New York

    Google Scholar 

  22. Papoulis A (1962) The Fourier integral and its applications. McGraw-Hill, New York

    Google Scholar 

  23. Ohta K, Ishida H (1988) Comparison among several numerical integration methods for Kramers-Kronig transformation. Appl Spectrosc 42:952–957

    Article  CAS  Google Scholar 

  24. Palik E (1985) Handbook of optical constants of solids. Academic, Orlando

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kin Seng Chiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, B., Chiang, K.S. Application of the Hilbert Transform Method for the Retrieval of the Phase Characteristics of Plasmonic Metal Bragg Gratings. Plasmonics 10, 107–115 (2015). https://doi.org/10.1007/s11468-014-9783-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9783-3

Keywords

Navigation