Skip to main content
Log in

High-Performance Magneto-Optic Surface Plasmon Resonance Sensor Design: An Optimization Approach

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

High-performance intensity-interrogated magneto-optic surface plasmon resonance (MOSPR) sensors are designed by a multi-objective optimization approach. Designed devices show bulk refractive index sensitivity 1 order of magnitude larger than the current state of the art, while the design procedure allows to chose an appropriate trade-off between sensor performance and ease of fabrication. Straightforward guidelines for the sensor design and fabrication emerge from the optimization process, indicating that minimization of the optical losses takes precedence on the maximization of the magneto-optical modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Homola J, Yee SS, Gauglitz G (1999) Sensor Actuat B-Chem 54(1–2):3. doi:10.1016/S0925-4005(98)00321-9

    Article  CAS  Google Scholar 

  2. Homola J, Piliarik M (2006) Surface plasmon resonance based sensors. Springer

  3. Homola J (2008) Chem Rev 108(2):462

    Article  CAS  Google Scholar 

  4. Regatos D, Sepúlveda B, Fariña D, Carrascosa LG, Lechuga LM (2011) Opt Express 19(9):8336. doi:10.1364/OE.19.008336

    Article  CAS  Google Scholar 

  5. Markowicz PP, Law WC, Baev A, Prasad PN, Patskovsky S, Kabashin A (2007) Opt Express 15(4):1745. doi:10.1364/OE.15.001745

    Article  CAS  Google Scholar 

  6. Patskovsky S, Maisonneuve M, Meunier M, Kabashin AV (2008) Opt Express 16(26):21305. doi:10.1364/OE.16.021305

    Article  CAS  Google Scholar 

  7. Regatos D, Fariña D, Calle A, Cebollada A, Sepúlveda B, Armelles G, Lechuga LM (2010) J Appl Phys 108(5):054502. doi:10.1063/1.3475711

    Article  Google Scholar 

  8. Manera MG, Montagna G, Ferreiro-Vila E, González-Garca L, Sánchez-Valencia JR, González-Elipe AR, Cebollada A, Garcia-Martin JM, García-Martín A, Armelles G, Rella R (2011) J Mater Chem 21(40):16049. doi:10.1039/C1JM11937K

    Article  CAS  Google Scholar 

  9. Martín-Becerra D, González-Díaz JB, Temnov VV, Cebollada A, Armelles G, Thomay T, Leitenstorfer A, Bratschitsch R, García-Martín A, Goonzález MU (2010) Appl Phys Lett 97(18):183114. doi:10.1063/1.3512874

    Article  Google Scholar 

  10. Ferreiro-Vila E, González-Díaz JB, Fermento R, González MU, García-Martín A, García-Martín JM, Cebollada A, Armelles G, Meneses-Rodríguez D, Sandoval EMN (2009) Phys Rev B 80(12):125132. doi:10.1103/PhysRevB.80.125132

    Article  Google Scholar 

  11. Ferreiro-Vila E, Iglesias M, Paz E, Palomares FJ, Cebollada F, González JM, Armelles G, García-Martín JM, Cebollada A (2011) Phys Rev B 83(20):205120 . doi:10.1103/PhysRevB.83.205120

    Article  Google Scholar 

  12. Ferreiro-Vila E, García-Martín JM, Cebollada A, Armelles G, González MU (2013) Opt Express 21(4):4917. doi:10.1364/OE.21.004917

    Article  CAS  Google Scholar 

  13. Clavero C, Yang K, Skuza JR, Lukaszew RA (2010) Opt Express 18(8):7743. doi:10.1364/OE.18.007743

    Article  CAS  Google Scholar 

  14. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester

    Google Scholar 

  15. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) IEEE T Evolut Comput 6(2):182. doi:10.1109/4235.996017

    Article  Google Scholar 

  16. Smet K, Ryckaert WR, Pointer MR, Deconinck G, Hanselaer P (2011) Opt Express 19(7):6903. doi:10.1364/OE.19.006903

    Article  Google Scholar 

  17. Forestiere C, Pasquale AJ, Capretti A, Miano G, Tamburrino A, Lee SY, Reinhard BM, Dal Negro L (2012) Nano Lett 12(4):2037. doi:10.1021/nl300140g

    Article  CAS  Google Scholar 

  18. Feichtner T, Selig O, Kiunke M, Hecht B (2012) Phys Rev Lett 109(12):127701. doi:10.1103/PhysRevLett.109.127701

    Article  Google Scholar 

  19. Fortin FA, De Rainville FM, Gardner MA, Parizeau M, Gagné C, Mach J (2012) Learn Res 13:2171

    Google Scholar 

  20. Zitzler E, Laumanns M, Thiele L (2001) Spea2: improving the strength Pareto evolutionary algorithm. Tech Rep

  21. Mansuripur M (1990) J Appl Phys 67(10):6466. doi:10.1063/1.345121

    Article  Google Scholar 

  22. Pellegrini G py-matrix—a python implementation of the transfer matrix method for multilayer structures with arbitrary dielectric tensors. Accessed: 2014-05-10. https://github.com/gevero/py-matrix.

  23. Palik E D (1985) Handbook of optical constants of solids . Academic press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Pellegrini.

Additional information

Funding from the Italian MIUR through FIRB project “NanoPlasMag” (RBFR10OAI0) is acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pellegrini, G., Mattei, G. High-Performance Magneto-Optic Surface Plasmon Resonance Sensor Design: An Optimization Approach. Plasmonics 9, 1457–1462 (2014). https://doi.org/10.1007/s11468-014-9764-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9764-6

Keywords

Navigation