Skip to main content
Log in

Shell Thickness-Dependent Plasmon Coupling and Creation of SERS Hot Spots in Au@Ag Core-Shell Nanostructures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The main objective of the present study is to investigate the shell thickness-dependent Raman enhancement activity of silver-coated gold nanoparticles (Au@Ag NPs) when bound to a model analyte 2-mercaptobenzoic acid (2-MBA). With an optimized Ag:Au ratio, dimeric and trimeric Au@Ag nanostructures were prepared in the presence of 2-MBA and are characterized by spectroscopic and microscopic techniques. These dimeric junctions act as hot spots and the molecules trapped at these junctions showed higher Raman signal enhancements due to the presence of amplified electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme. 1
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tian ZQ, Ren B (2004) Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy. Annu Rev Phys Chem 55:197–229

    Article  CAS  Google Scholar 

  2. Moskovits M (1985) Surface-enhanced spectroscopy. M ReV Mod Phys 57:783–826

    Article  CAS  Google Scholar 

  3. Weitz DA, Garoff S, Gersten JI, Nitzan A (1983) The enhancement of Raman scattering, resonance Raman scattering and fluorescence from molecules adsorbed on a rough silver surface. J Phys Chem 78:5324

    Article  CAS  Google Scholar 

  4. Creighton JA (1983) Surface Raman electromagnetic enhancement factors for molecules at the surface of small isolated metal spheres: the determination of adsorbate orientation from SERS relative intensities. Surf Sci 124:209–219

    Article  CAS  Google Scholar 

  5. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357–366

    Article  CAS  Google Scholar 

  6. Guerrini L, Graham D (2012) Molecularly-mediated assemblies of plasmonic nanoparticles for surface-enhanced Raman spectroscopy applications. Chem Soc Rev 41:7085–7107

    Article  CAS  Google Scholar 

  7. Lal S, Grady NK, Kundu J, Levin CS, Lassiterde JB, Halas NJ (2008) Tailoring plasmonic substrates for surface enhanced spectroscopy. Chem Soc Rev 37:898–911

    Article  CAS  Google Scholar 

  8. Nabika H, Takase M, Nagasawa F, Murakoshi K (2010) Toward plasmon-induced photoexcitation of molecules. J Phys Chem Lett 1:2470–2487

    Article  CAS  Google Scholar 

  9. Qin L, Zou S, Xue C, Atkinson A, Schatz GC, Mirkin CA (2006) Designing, fabricating, and imaging Raman hot spots. Proc Natl Acad Sci 103:13300–13303

    Article  CAS  Google Scholar 

  10. Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ (2005) Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 5:1569–1574

    Article  CAS  Google Scholar 

  11. Kumar J, Thomas KG (2011) Surface-enhanced Raman spectroscopy: investigations at the nanorod edges and dimer junctions. J Phys Chem Lett 2:610–615

    Article  CAS  Google Scholar 

  12. Li W, Camargo PHC, Au L, Zhang Q, Rycenga M, Xia Y (2010) Etching and dimerization: a simple and versatile route to dimers of silver nanospheres with a range of sizes. Angew Chem Int Ed 49:164–168

    Article  CAS  Google Scholar 

  13. Cui Y, Ren B, Yao JL, Gu RA, Tian ZQ (2006) Synthesis of Ag core Au shell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy. J Phys Chem B 110:4002–4006

    Article  CAS  Google Scholar 

  14. Kumar GVP, Shruthi B, Vibha S, Reddy RBA, Kundu TK, Narayana C (2007) Hot spots in Ag core-Au shell nanoparticles potent for surface-enhanced Raman scattering studies of biomolecules. J Phys Chem C 111:4388–4392

    Article  CAS  Google Scholar 

  15. Camden JP, Dieringer JA, Wang Y, Masiello DJ, Marks LD, Schatz GC, Van Duyne RP (2008) Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J Am Chem Soc 130:12616–12617

    Article  CAS  Google Scholar 

  16. Li W, Camargo PHC, Lu X, Xia Y (2009) Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett 9:485–490

    Article  CAS  Google Scholar 

  17. Kanjanawarut R, Su X (2009) Colorimetric detection of DNA using unmodified metallic nanoparticles and peptide nucleic acid probes. Anal Chem 81:6122–6129

    Article  CAS  Google Scholar 

  18. Olson TY, Schwartzberg AM, Orme CA, Talley CEO, Connell B, Zhang JZ (2008) J Phys Chem C 118:6319–6329

    Article  Google Scholar 

  19. Fenter P, Gustafsson T (1991) Structure and morphology of Au grown on Ag (110). Phys Rev B 43:12195–12204

    Article  CAS  Google Scholar 

  20. Ma W, Fang Y, Hao G, Wang W (2010) Adsorption behaviors of 4-mercaptobenzoic acid on silver and gold films. Chin J Chem Phys 23:659–663

    Article  CAS  Google Scholar 

  21. Shanthil M, Thomas R, Swathi RS, Thomas KG (2012) Ag@SiO2 core-shell nanostructures: distance-dependent plasmon coupling and SERS investigation. J Phys Chem Lett 3:1459–1464

    Article  CAS  Google Scholar 

  22. Kneipp K, Kneipp H, Kneipp J (2006) Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates: from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc Chem Res 39:443–450

    Article  CAS  Google Scholar 

  23. Jeanmaire DL, van Duyne RP (1977) Surface Raman electrochemistry part I. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1–20

    Article  CAS  Google Scholar 

  24. Wu YP, Nordlander P (2006) Plasmon hybridization in nanoshells with a nonconcentric core. J Chem Phys 125:124708–124718

    Article  Google Scholar 

  25. Chen Y, Wu H, Li Z, Wang P, Yang L, Fang Y (2012) The study of surface plasmon in Au/Ag core/shell compound nanoparticles. Plasmonics 7:509–513

    Article  CAS  Google Scholar 

  26. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  CAS  Google Scholar 

  27. Rodríguez OP, Pal U (2011) Enhanced plasmonic behavior of bimetallic (Ag-Au) multilayered spheres. Nanoscale Res Lett 6:279–283

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the head of the Department of Chemistry, University of Kerala for proving the instrumental facilities and support. The authors greatly acknowledge the head of the Department of Optoelectronics, University of Kerala for providing the Raman Spectroscopy instrumental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sony.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aswathy, B., Sony, G. & Gopchandran, K.G. Shell Thickness-Dependent Plasmon Coupling and Creation of SERS Hot Spots in Au@Ag Core-Shell Nanostructures. Plasmonics 9, 1323–1331 (2014). https://doi.org/10.1007/s11468-014-9745-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9745-9

Keywords

Navigation