Skip to main content
Log in

Distributed-Bragg-Reflection Assisted Tailoring of Extraordinary Transmission Spectrum in Sub-Wavelength Hole Array

  • Published:
Plasmonics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Lezec H J, Degiron A, Devaux E, Linke R A, Martín-Moreno L, Garcia-Vidal F J, Ebbesen T W (2002) Beaming light from a subwavelength aperture. Science 297:820–822

  2. Ghaemi H, Thio T, Grupp D, Ebbesen T W, Lezec H (1998) Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B 58:6779–6782

    Article  CAS  Google Scholar 

  3. García, de Abajo F J (2007) Colloquium: Light scattering by particle and hole arrays. Rev Mod Phys 79:1267–1290

  4. Monteiro J P, Carneiro L B, Rahman M M, Brolo A G, Santos M J L, Ferreira J, Girotto E M (2013) Effect of periodicity on the performance of surface plasmon resonance sensors based on subwavelength nanohole arrays. Sens Actuators B 178:366–370

    Article  CAS  Google Scholar 

  5. Kim T J, Thio T, Ebbesen T W, Grupp D E, Lezec H J (1999) Control of optical transmision through metals perforated with subwavelength hole arrays. Opt Lett 24:256–258

    Article  CAS  Google Scholar 

  6. Schröter U, Heitmann D (1998) Surface-plasmon-enhanced transmission through metallic gratings. Phys Rev B 58:15419–15421

    Article  Google Scholar 

  7. Martín-Moreno L, García-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B, Ebbesen T W (2001) Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett 86:1114–1117

  8. Delgado V, Marqués R, Jelinek L (2010) Analytical theory of extraordinary optical transmission through realistic metallic screens. Opt Express 18:6506–6515

    Article  CAS  Google Scholar 

  9. Degiron A, Ebbesen T W (2005) The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures. J Opt A: Pure Appl Opt 7:90–96

    Article  Google Scholar 

  10. Gao H, Henzie J, Odom T W (2006) Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. Nano Lett 6:2104–2108

    Article  CAS  Google Scholar 

  11. Tetz K A, Pang L, Fainman Y (2006) High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance. Opt Lett 31:1528–1530

    Article  Google Scholar 

  12. Belotelov V I, Bykov D A, Doskolovich L L, Kalish A N, Zvezdin A K (2009) Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films. J Opt Soc Am B 26:1594–1598

    Article  CAS  Google Scholar 

  13. Nguyen H, Sidiroglou F, Collins S F, Davis T J, Roberts A, Baxter G W (2013) A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures. Appl Phys Lett 103:193116

    Article  Google Scholar 

  14. Xu T, Jiao X, Blair S (2009) Third-harmonic generation from arrays of sub-wavelength metal apertures. Opt Express 17:23582–23588

    Article  CAS  Google Scholar 

  15. Nahata A, Linke R A, Ishi T, Ohashi K (2003) Enhanced nonlinear optical conversion from a periodically nanostructured metal film. Opt Lett 28:423–425

    Article  Google Scholar 

  16. Zheng H Y, Jin X R, Park J W, Lu Y H, Rhee J Y, Jang W H, Cheong H, Lee Y P (2012) Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance. Opt Express 20:24002–24009

    Article  CAS  Google Scholar 

  17. Molen K V, Koerkamp K K, Enoch S, Segerink F, Van Hulst N, Kuipers L (2005) Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory. Phys Rev B 72:045421

    Article  Google Scholar 

  18. Marani R, Marrocco V, Grande M, Morea G, DOrazio A, Petruzzelli V (2011) Enhancement of extraordinary Optical transmission in a double heterostructure plasmonic bandgap cavity. Plasmonics 6:469–476

    Article  Google Scholar 

  19. Taflove A, Hagness S C (2005) Computational Electrodynamics: The Finite-Difference Time-Domain Method. Norwood MA, Artech House

    Google Scholar 

  20. Williams S M, Coe J V (2006) Dispersion study of the infrared transmission resonances of freestanding Ni Microarrays. Plasmonics 1:87–93

    Article  CAS  Google Scholar 

  21. Li J Y, Hua Y L, Fu J X, Lia Z Y (2010) Influence of hole geometry and lattice constant on extraordinary optical transmission through subwavelength hole arrays in metal films. Appl Phys Lett 107:073101

    Google Scholar 

  22. Cui Y, He S (2009) Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna. Opt Lett 34:16–18

    Article  CAS  Google Scholar 

  23. Yeh P, Yariv A, Hong C S (1977) Electromagnetic propagation in periodic stratified media. I. General theory. J Opt Soc Am 67:423–438

    Article  Google Scholar 

  24. Liang W, Xu Y, Choi J M, Yariv A (2003) Engineering transverse Bragg resonance waveguides for large modal volume lasers. Opt Lett 28:2079–2081

    Article  Google Scholar 

  25. Liu B, Yu L, Lu Z X, Li T, Song G (2011) Controlling extraordinary optical transmission by subwavelength hole arrays -Bragg gratings structure. J Phys: Conf Ser 276:012074

    Google Scholar 

  26. Marthandam P, Gordon R (2007) Plasmonic Bragg reflectors for enhanced extraordinary optical transmission through nano-hole arrays in a gold film. Opt Express 15:12995–13002

    Article  CAS  Google Scholar 

  27. Tanigawa T, Onishi T (2007) Shimizu J. Temperature-stable operating current of surface plasmon VCSELs with metal nanohole arrays. Conf Lasers & Electro-optics, Ueda T and Ueda D

    Google Scholar 

  28. Kumar V D, Srinivas T, Selvarajan A (2004) Investigation of ring resonators in photonic crystal circuits. Photonics Nanostructures-Fundam Appl 2:199–206

    Article  Google Scholar 

  29. Chu S T, Chaudhuri S K (1989) A finite-difference time-domain method for the design and analysis of guided-wave optical structures. J Lightwave Technol 7:2033–2038

    Article  Google Scholar 

  30. Toyoda T, Yabe M (1983) The temperature dependence of the refractive indices of S r T i O 3 and T i O 2. J Phys D: Appl Phys 16:L251

    Article  CAS  Google Scholar 

  31. Dodge M J (1984) Refractive properties of magnesium fluoride. Appl Opt 23:1980–1985

    Article  CAS  Google Scholar 

  32. Palik E D (1985) Handbook of optical constants of solids. Academic, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritwick Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A., Das, R. Distributed-Bragg-Reflection Assisted Tailoring of Extraordinary Transmission Spectrum in Sub-Wavelength Hole Array. Plasmonics 9, 1315–1321 (2014). https://doi.org/10.1007/s11468-014-9744-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9744-x

Keywords

Navigation