Skip to main content
Log in

Systematic Theoretical Analysis of Selective-Mode Plasmonic Filter Based on Aperture-Side-Coupled Slot Cavity

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

By taking the aperture as a resonator, we propose an analytical model to describe the dynamic transmission in metal-dielectric-metal (MDM) waveguide aperture-side-coupled with slot cavity. The theoretical results and the finite-difference time-domain (FDTD) simulations agree well with each other, and both demonstrate the mode selectivity and filtering tunability of the plasmonic structure. By adjusting the phase shifts in slot cavity or resonance frequency determined by the aperture, one can realize the required transmission spectra and slow light effect. The theoretical analysis may open up avenues for the control of light in highly integrated optical circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bozhevolnyi SI (2009) Plasmonic nanoguides and circuits. Pan Stanford Publishing Pte. Ltd, Singapore

    Google Scholar 

  2. Pile DFP, Ogawa T, Gramotnev DK, Matsuzaki Y, Vernon KC, Yamaguchi K, Okamoto T, Haraguchi M, Fukui M (2005) Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl Phys Lett 87:261114

    Article  Google Scholar 

  3. Chen JJ, Li Z, Zhang X, Xiao JH, Gong QH (2013) Submicron bidirectional all-optical plasmonic switches. Sci Rep 3:1451

    Google Scholar 

  4. Park JH, Kim KY, Lee IM, Na HM, Lee SY, Lee BH (2010) Trapping light in plasmonic waveguides. Opt Express 18:598–623

    Article  CAS  Google Scholar 

  5. Economou EN (1969) Surface plasmons in thin films. Phys Rev 182:539–554

    Article  Google Scholar 

  6. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91

    Article  CAS  Google Scholar 

  7. Leveque AG, Szunerits S, Pennec Y, Djafari-Rouhani B, Boukherroub R, Dobrzynski L (2013) Nanometal plasmon polaritons. Surf Sci Rep 68:1–67

    Article  Google Scholar 

  8. Cai W, Shin W, Fan S, Brongersma ML (2010) Elementsfor plasmonic nanocircuits with three-dimensional slot waveguides. Adv Mater 22:5120–5124

    Article  CAS  Google Scholar 

  9. Zhang X, Li Z, Chen JJ, Yue S, Gong QH (2013) A dichroic surface-plasmon-polariton splitter based on an asymmetric T-shape nanoslit. Opt Express 21:14548–14554

    Article  Google Scholar 

  10. Chen JJ, Li Z, Yue S, Xiao JH, Gong QH (2012) Plasmon-induced transparency in asymmetric T-shape single slit. Nano Lett 12:2494–2498

    Article  CAS  Google Scholar 

  11. Chheang V, Lee TK, Oh GY, Kim HS, Lee BH, Kim DG, Choi YW (2013) Compact polarizing beam splitter based on a metal-insulator-metal inserted into multimode interference coupler. Opt Express 21:20880–20887

    Article  Google Scholar 

  12. Lee TW, Gray S (2005) Subwavelength light bending by metal slit structures. Opt Express 13:9652–9659

    Article  Google Scholar 

  13. Guo YN, Wang HN, Reed JM, Pan S, Zou SL (2013) Effective light bending and controlling in a chamber-channel waveguide system. Opt Lett 38:2209–2211

    Article  Google Scholar 

  14. Gao H, Shi H, Wang C, Du C, Luo X, Deng Q, Lv Y, Lin X, Yao H (2005) Surface plasmon polariton propagation and combination in Y-shaped metallic channels. Opt Express 13:10795–10800

    Article  Google Scholar 

  15. Veronis G, Fan S (2007) Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides. Opt Express 15:1211–1221

    Article  Google Scholar 

  16. Rotenberg N, Beggs DM, Sipe JE, Kuipers L (2013) Resonant coupling from a new angle: coherent control through geometry. Opt Express 21:16504–16513

    Article  CAS  Google Scholar 

  17. Wang B, Wang GP (2004) Surface plasmon polariton propagation in nanoscale metal gap waveguides. Opt Lett 29:1992–1994

    Article  Google Scholar 

  18. Cao GT, Li HJ, Zhan SP, Xu HQ, Liu ZM, He ZH, Wang Y (2013) Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators. Opt Express 21:9198–9205

    Article  Google Scholar 

  19. Chen L, Gao CM, Xu JM, Zang XF, Cai B, Zhu Y (2013) Observation of electromagnetically induced transparency-like transmission in terahertz asymmetric waveguide-cavities systems. Opt Lett 38:1379–1381

    Article  Google Scholar 

  20. Piao XJ, Yu S, Park N (2012) Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator. Opt Express 20:18994–18999

    Article  Google Scholar 

  21. Lu H, Liu XM, Mao D, Gong YK, Wang GX (2011) Induced transparency in nanoscale plasmonic resonator systems. Opt Lett 36:3233–3235

    Article  Google Scholar 

  22. Intaraprasonk V, Fan SH (2012) Enhancing the waveguide-resonator optical force with an all-optical on-chip analog of electromagnetically induced transparency. Phys Rev A 86:063833

    Article  Google Scholar 

  23. Lin XS, Huang XG (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33:2874–2876

    Article  Google Scholar 

  24. Tao J, Huang XG, Lin X, Zhang Q, Jin X (2009) A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure. Opt Express 17:13989–13994

    Article  CAS  Google Scholar 

  25. Pannipitiya A, Rukhlenko ID, Premaratne M, Hattori HT, Agrawal GP (2010) Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Opt Express 18:6191–6204

    Article  CAS  Google Scholar 

  26. Luo X, Zou XH, Li XF, Zhou Z, Pan W, Yan LS, Wen KH (2013) High-uniformity multichannel plasmonic filter using linearly lengthened insulators in metal–insulator–metal waveguide. Opt Lett 38:1585–1587

    Article  Google Scholar 

  27. Wen KH, Yan LS, Pan W, Luo B, Guo Z, Guo YH, Luo XG (2013) Design of plasmonic comb-like filters using loop-based resonators. Plasmonics 8:1017–1022

    Article  CAS  Google Scholar 

  28. Lu H, Liu XM, Mao D, Wang LR, Gong YK (2010) Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt Express 18:17922–17927

    Article  CAS  Google Scholar 

  29. Rezaei M, Miri M, Khavasi A, Mehrany K, Rashidian B (2012) An efficient circuit model for the analysis and design of rectangular plasmonic resonators. Plasmonics 7:245–252

    Article  Google Scholar 

  30. Yun BF, Hu GH, Cui YP (2013) Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity. Plasmonics 8:267–275

    Article  CAS  Google Scholar 

  31. Zand I, Abrishamian MS, Berini P (2013) Highly tunable nanoscale metal-insulator-metal split ring core ring resonators (SRCRRs). Opt Express 21:79–86

    Article  Google Scholar 

  32. Yu HC, Chen MH, Li PX, Yang SG, Chen HW, Xie SZ (2013) Compact Q-value enhanced bandpass filter based on the EIT-like effect accompanying application in downconversion APL. Opt Lett 38:3906–3909

    Article  CAS  Google Scholar 

  33. Hu F, Yi H, Zhou Z (2011) Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities. Opt Express 19:4848–4855

    Article  Google Scholar 

  34. Han Z, Van V, Herman WN, Ho PT (2009) Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes. Opt Express 17:12678–12684

    Article  CAS  Google Scholar 

  35. Nielsen MP, Elezzabi AY (2013) Ultrafast all-optical modulation in a silicon nanoplasmonic resonator. Opt Express 21:20274–20279

    Article  CAS  Google Scholar 

  36. Lu H, Liu XM, Mao D (2012) Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys Rev A 85:053803

    Article  Google Scholar 

  37. Han ZH, Bozhevolnyi SI (2011) Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices. Opt Express 19:3251–3257

    Article  CAS  Google Scholar 

  38. Haus HA (1984) Waves and fields in optoelectronics. Prentice-Hall, Englewood Cliffs, Chapter 7

    Google Scholar 

  39. Palik ED (1985) Handbook of optical constants of solids. Academic, Boston

    Google Scholar 

  40. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Fundamental Research Funds for the Central Universities of Central South University under Grant No. 2012zzts007 and 2013zzts009, the Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20100162110068, and the National Natural Science Foundation of China under Grant No. 61275174.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjian Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, G., Li, H., Deng, Y. et al. Systematic Theoretical Analysis of Selective-Mode Plasmonic Filter Based on Aperture-Side-Coupled Slot Cavity. Plasmonics 9, 1163–1169 (2014). https://doi.org/10.1007/s11468-014-9727-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9727-y

Keywords

Navigation