Skip to main content
Log in

The Role of Resonance Frequency of the Plasmons in Electromagnetic Wave Scattering Process from a Dielectric Covered Metallic Rod Placed in a Plasma Antenna

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The electromagnetic wave scattering due to excitation of surface plasmons from a metallic rod with dielectric layer embedded in the long plasma column is investigated. In the first part, for short-wavelength waves by investigating the variations of surface polarized charge density on the boundaries, the resonance frequencies and the effective factors on it such as the geometrical dimensions, the radius of the metal, the dielectric thickness, and the plasma radius will be analyzed. In the second part, for presenting an exact analysis and categorizing types of resonant frequency to the dominant resonant frequency and subsidiary resonant frequency of the plasmons, the scattering of long-wavelength waves from the mentioned object will be reviewed. In both cases, the backscattering cross section which is a scale of the scattered power in the direction of incident will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bohm D, Pines D (1951) Phys Rev 82(5):625–634

    Article  CAS  Google Scholar 

  2. Pines D, Bohm D (1952) Phys Rev 85(2):338–353

    Article  CAS  Google Scholar 

  3. Fourkal E, Velchev I, Ma CM, Smolyakov A (2006) Phys Plasmas 13(9):092113

    Article  Google Scholar 

  4. Fedders PA (1967) Phys Rev 153:438–443

    Article  CAS  Google Scholar 

  5. Garcia-Vidal FJ, Pendry JB (1996) Phys Rev Lett 77(6):1163–1166

    Article  CAS  Google Scholar 

  6. Henneberger K (1998) Rev Phys Lett 80(13):2889–2892

    Article  CAS  Google Scholar 

  7. Tan WC, Preist TW, Sambles RJ (2000) Phys Rev B 62(16):11134–1138

    Article  CAS  Google Scholar 

  8. Martin-Moreno L, Garcia-Vidal FJ, Lezek HJ, Pellerin KM, Thio T, Pendry JB, Ebbesen TW (2001) Phys Rev Lett 86:1114

    Article  CAS  Google Scholar 

  9. Garcia de Abajo FJ (2007) Rev Mod Phys 79(4):1267–1290

    Article  CAS  Google Scholar 

  10. Satija J, Punjabi N, Sai VVR, Mukherji S (2013) Plasmonics. doi:10.1007/s11468-013-9618-7

  11. Dong J, Liu J, Zhao X, Liu P, Liu J, Kang G, Xie J, Wang Y (2013) Plasmonics 8(4):1543–1550

    Article  CAS  Google Scholar 

  12. Wu C, Neuner B, Shvets G, John J, Milder A, Zollars B, Savoy S (2011) Phys Rev B 84(7):075102

    Article  Google Scholar 

  13. Tonchev S, Parriaux O, Tenev T, Miloushev I, Troadec D, Patriarche G. (2013) Plasmonics 8(2):829–833

    Article  CAS  Google Scholar 

  14. Tenev T, Miloushev I, Peyeva R, Tonchev S, Parriaux O (2013) Plasmonics. doi:10.1007/s11468-013-9626-7

  15. Wait J (1955) Can J Phys 33(5):189–195

    Article  Google Scholar 

  16. Tan C (1957) J Appl Phys 28(5):628–633

    Article  Google Scholar 

  17. Sachdeva BK, Hurd RA (1977) J Appl Phys 48(4):1473–1476

    Article  Google Scholar 

  18. Bowman JJ, Senior TBA, Uslenghi PLE (1987) Electromagnetic and Acoustic Scattering by Simple Shapes. Hemisphere (Publishing Corp.), Bristol

    Google Scholar 

  19. Parrikar R, Kishk AA, Elsherbeni AZ (1991) Proc IEE 138(2):169–175

    Google Scholar 

  20. Videen G, Ngo D, Chylek P, Pinnick RG, Opt J (1995) Soc Am A 12(5):922–928

    Google Scholar 

  21. Ngo D, Videen G, Chylek P (1996) Comput Phys Commun 99(1):94–112

    Article  CAS  Google Scholar 

  22. Muhammad Mushref A (2005) Eur Cent J Phys 3(2):229–246

    Google Scholar 

  23. Yeh C, Rusch W (1965) J Appl Phys 36(7):2302–2306

    Article  Google Scholar 

  24. Gal G, Gibson W, Trans IEEE (1968) Antennas and Propag 16(4):468–475

    Article  Google Scholar 

  25. Platzman P, Ozaki H (1960) J Appl Phys 31(9):1597–1601

    Article  Google Scholar 

  26. Shodhan K (1970) Proc IEEE 58(1):147–149

    Article  Google Scholar 

  27. Qian Z, Chen R (2007) Int J Infrared Millim Waves 28(1):61–69

    Article  Google Scholar 

  28. Maier SA (2007) Plasmonics: Fundamentals and Applications. Springer, New York

    Google Scholar 

  29. Brongersma ML, Kik PG (2007) Surface Plasmons Nanophotonics. Springer, Dordrecht

    Book  Google Scholar 

  30. Sterligov VA, Grytsaienko IO, Men Y, Nesterov ML, Nikitin AY (2013) Plasmonics. doi:10.1007/s11468-013-9615-x

  31. Nikitin AY, Lopez-Tejeira F, Martin-Moreno L. (2007) Phys Rev B 75(3):035129

    Article  Google Scholar 

  32. Lopez-Tejeira F, Rodrigo SG, Martin-Moreno L, Garcia-Vidal FJ, Devaux E, Ebbesen TW, Krenn JR, Radko IP, Bozhevolnyi SI, Gonzalez MU, Weeber JC, Dereux A (2007) Nat Phys 3(5):324–328

    Article  CAS  Google Scholar 

  33. Shokri B, Jazi B (2003) Phy Lett A 318(52):415–424

    Article  CAS  Google Scholar 

  34. Censor D (1969) Trans IEEE Microw Theory Tech 17(3):154–158

    Article  Google Scholar 

  35. Shiozawa T, Seikai S (1972) Trans IEEE Antennas Propag 20(4):455–463

    Article  Google Scholar 

  36. Krall NA, Trivelpiece AW (1973) Principles of Plasma Physics. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Jazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jazi, B., Sadeghi-Nia, F. & Rahmani, Z. The Role of Resonance Frequency of the Plasmons in Electromagnetic Wave Scattering Process from a Dielectric Covered Metallic Rod Placed in a Plasma Antenna. Plasmonics 9, 1121–1132 (2014). https://doi.org/10.1007/s11468-014-9722-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9722-3

Keywords

Navigation