Skip to main content
Log in

Scattering Efficiency and LSPR Tunability of Bimetallic Ag, Au, and Cu Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Scattering efficiencies of Ag–Cu, Ag–Au, and Au–Cu alloy nanoparticles are studied based on Mie theory for their possible applications in solar cells. The effect of size (radius), surrounding medium, and alloy composition on the scattering efficiency at the localized surface plasmon resonance (LSPR) wavelengths has been reported. In the alloy nanoparticles of Ag1−x Cu x , Au1−x Cu x and Ag1−x Au x ; the scattering efficiency gets red-shifted with increase in x. Moreover, the scattering efficiency enhancement can be tuned and controlled with both the alloy composition and the surrounding medium refractive index. A linear relationship which is in good agreement to the experimental observations between the scattering efficiency and metal composition in the alloys are found. The effect of nanoparticle size and LSPR wavelength (scattering peak position) on the full width half maxima and scattering efficiency has also been studied. Comparison of Au–Ag, Au–Cu, and Ag–Cu alloy nanoparticles with 50-nm radii shows the optical response of Ag–Cu alloy nanoparticle with wide bandwidth in the visible region of the electromagnetic spectrum making them suitable for plasmonic solar cells. Further, the comparison of Ag–Cu alloy and core@shell nanoparticles of similar size and surrounding medium shows that Cu@Ag nanoparticle exhibits high scattering efficiency with nearly the same bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  2. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3806–3819

    Article  CAS  Google Scholar 

  3. Moores A, Goettmann F (2006) The plasmon band in noble metal nanoparticles: an introduction to theory and applications. New J Chem 30:1121–1132

    Article  CAS  Google Scholar 

  4. Sekhon JS, Verma SS (2012) Rational selection of nanorod plasmons: material, size, and shape dependence mechanism for optical sensors. Plasmonics 7:453–459

    Article  CAS  Google Scholar 

  5. Hossain MK, Kitahama Y, Huang GG, Han X, Ozaki Y (2009) Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods. Anal Bioanal Chem 394:1747–1760

    Article  CAS  Google Scholar 

  6. Conde J, Doria G, Baptista P (2011) Noble metal nanoparticles applications in cancer. J Drug Deliv. doi:10.1155/2012/751075

    Google Scholar 

  7. Pillai S, Green MA (2010) Plasmonics for photovoltaic applications. Solar Energy Mater Solar Cells 94:1481–1486

    Article  CAS  Google Scholar 

  8. Shin KS, Kim JH, Kim IH, Kim K (2012) Novel fabrication and catalytic application of poly (ethylenimine)-stabilized gold–silver alloy nanoparticles. J Nanopart Res 14:735

    Article  Google Scholar 

  9. Nishijima Y, Akiyama S (2012) Unusual optical properties of the Au/Ag alloy at the matching mole fraction. Opt Mater Express 2(9):1226–1235

    Article  CAS  Google Scholar 

  10. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  11. Hayashi S, Okamoto T (2012) Plasmonics: visit the past to know the future. J Phys D Appl Phys 45:433001

    Article  Google Scholar 

  12. Adamovic N, Schmid U (2011) Potential of plasmonics in photovoltaic solar cells. Elektrotechnik & Informationstechnik 124(10):342–347

    Article  Google Scholar 

  13. Ma YW, Wu ZW, Zhang LH, Zhang J, Jian GS, Pan S (2012) Theoretical study of the local surface plasmon resonance properties of silver nanosphere clusters. Plasmonics. doi:10.1007/s11468-013-9541-y

    Google Scholar 

  14. Stoleru VG, Towe E (2004) Optical properties of nanometer-sized gold spheres and rods embedded in anodic alumina matrices. Appl Phys Lett. doi:10.1063/1.1828233

    Google Scholar 

  15. Yin G, Wang SY, Xu M, Chen LY (2006) Theoretical calculation of the optical properties of gold nanoparticles. J Korean Phys Soc 49(5):2108–2111

    CAS  Google Scholar 

  16. Tan KS, Cheong KY (2013) Advances of Ag, Cu, and Ag–Cu alloy nanoparticles synthesized via chemical reduction route. J Nanopart Res 15:1537

    Article  Google Scholar 

  17. Liu S, Chen G, Prasad PN, Swihart MT (2011) Synthesis of monodisperse Au, Ag, and Au–Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency. Chem Mater 23(18):4098–4101

    Article  CAS  Google Scholar 

  18. Motl NE, Ewusi-Annan E, Sines IT, Jensen L, Schaak RE (2010) Au–Cu alloy nanoparticles with tunable compositions and plasmonic properties: experimental determination of composition and correlation with theory. J Phys Chem C 114:19263–19269

    Article  CAS  Google Scholar 

  19. Bhagathsingha W, Nesaraj AS (2013) Low temperature synthesis and thermal properties of Ag–Cu alloy nanoparticles. Trans Nonferrous Met Soc China 23:128–133

    Article  Google Scholar 

  20. Beyene HT, Chakravadhanula VSK, Hanisch C, Strunskus T, Zaporojtchenko V, Elbahri M, Faupel F (2012) Vapor phase deposition, structure, and plasmonic properties of polymer-based composites containing Ag–Cu bimetallic nanoparticles. Plasmonics 7:107–114

    Article  CAS  Google Scholar 

  21. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16(26):21793–21800

    Article  CAS  Google Scholar 

  22. Sekhon JS, Verma SS (2011) Cu, CuO, and Cu2O nanoparticle plasmons for enhanced scattering in solar cells http://dx.doi.org/10.1364/E2.2011.JWE22

  23. Liu J, Chen F (2012) Plasmon enhanced photoelectrochemical activity of Ag–Cu nanoparticles on TiO2 /Ti substrates. Int J Electrochem Sci 7:9560–9572

    CAS  Google Scholar 

  24. Sekhon JS, Verma SS, Malik HK (2013) Tailoring surface plasmon resonance wavelengths and sensoric potential of core-shell metal nanoparticles. Sensor Lett 11:512–518

    Article  CAS  Google Scholar 

  25. Sekhon JS, Verma SS (2011) Refractive index sensitivity analysis of Ag, Au, and Cu nanoparticles. Plasmonics 6:311–317

    Article  CAS  Google Scholar 

  26. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New York

    Book  Google Scholar 

  27. Kalsin AM, Pinchuk AO, Smoukov SK, Paszewski M, Schatz GC, Grzybowski BA (2006) Electrostatic aggregation and formation of core-shell suprastructures in binary mixtures of charged metal nanoparticles. Nano Lett 6(9):1896–1903

    Article  CAS  Google Scholar 

  28. Rodriguez OP, Perez PPG, Pal U (2011) MieLab: a software tool to perform calculations on the scattering of electromagnetic waves by multilayered spheres. Int J Spectrosc. doi:10.1155/2011/583743

    Google Scholar 

  29. Palik ED (1985) Handbook of optical constants of solids. Academic, Boston

    Google Scholar 

  30. Hu M, Novo C, Funston A, Wang H, Staleva H, Zou S, Mulvaney P, Xia Y, Hartland GV (2008) Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance. J Mater Chem 18:1949–1960

    Article  CAS  Google Scholar 

  31. Sekhon JS, Verma SS (2012) Tunable plasmonic properties of silver nanorods for nanosensing applications. J Mater Sci 47:1930–1937

    Article  CAS  Google Scholar 

  32. Chan GH, Zhao J, Hicks EM, Schatz GC, Van Duyne RP (2007) Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett 7(7):1947–1952

    Article  CAS  Google Scholar 

  33. Shrestha KM, Sorensen CM, Klabunde KJ (2010) Synthesis of CuO nanorods, reduction of CuO into Cu nanorods, and diffuse reflectance measurements of CuO and Cu nanomaterials in the near infrared region. J Phys Chem C 114:14368–14376

    Article  CAS  Google Scholar 

  34. Rice KP, Walker EJ, Stoykovich MP, Saunders AE (2011) Solvent-dependent surface plasmon response and oxidation of copper nanocrystals. J Phys Chem C 115:1793–1799

    Article  CAS  Google Scholar 

  35. Rodriguez OP, Pal U (2011) Effects of surface oxidation on the linear optical properties of Cu nanoparticles. J Opt Soc Am B 28(11):2735–2739

    Article  Google Scholar 

  36. Evanoff DD Jr, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6:1221–1231

    Article  CAS  Google Scholar 

  37. Rahman LU, Qureshi R, Yasinzai MM, Shah A (2012) Synthesis and spectroscopic characterization of Ag–Cu alloy nanoparticles prepared in various ratios. C R Chimie 15:533–538

    Article  CAS  Google Scholar 

  38. Kiani Z, Abdi Y, Arzi E (2012) Low temperature formation of silver and silver-copper alloy nano-particles using plasma enhanced hydrogenation and their optical properties. World J Nano Sci Eng 2:142–147

    Article  Google Scholar 

  39. Pal A, Shah S, Devi S (2007) Preparation of silver, gold and silver–gold bimetallic nanoparticles in w/o microemulsion containing TritonX-100. Colloids and Surfaces A: Physicochem Eng Aspects 302:483–487

    Article  CAS  Google Scholar 

  40. Verma SS, Sekhon JS (2012) Influence of aspect ratio and surrounding medium on localized surface plasmon resonance (LSPR) of gold nanorod. J Opt 41(2):89–93

    Article  Google Scholar 

  41. Valodkar M, Modi S, Pal A, Thakore S (2011) Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: a green approach. Mater Res Bull 46:384–389

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author, Amit Bansal would like to thank SLIET Longowal for the financial support in the form of institute fellowship towards his Ph.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Bansal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bansal, A., Sekhon, J.S. & Verma, S.S. Scattering Efficiency and LSPR Tunability of Bimetallic Ag, Au, and Cu Nanoparticles. Plasmonics 9, 143–150 (2014). https://doi.org/10.1007/s11468-013-9607-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9607-x

Keywords

Navigation