Skip to main content
Log in

Light Manipulation by Gold Nanobumps

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Backward and forward scattering of surface plasmonic wave interactions from gold nanobumps on the surface of a 30-nm gold thin film demonstrate three-dimensional (3-D) focusing and diverging properties. Fan-shaped forward scattering of an individual nanobump is observed. A quarter-circle structure composed of nanobumps is exploited to manipulate scattering from each nanobump. Experimental results show that 3-D propagation vectors generated by the gold nanobumps with their heights of 16 nm can deflect the surface plasmonic waves to produce 3-D focusing at 3.6 μm above the surface of the gold film. We clearly demonstrate that 3-D forward and backward focusing from gold nanobumps are with different amplitudes and directions of the vertical propagation vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511

    Article  CAS  Google Scholar 

  2. Nomura W, Yatsui T, Ohtsu M (2006) Efficient optical near-field energy transfer along an Au nanodot coupler with size-dependent resonance. Appl Phys B 84:257–259

    Article  CAS  Google Scholar 

  3. Radko IP, Bozhevolnyi SI, Evlyukhin AB, Boltasseva A (2007) Surface plasmon polariton beam focusing with parabolic nanoparticle chains. Opt Express 15:6576–6582

    Article  Google Scholar 

  4. Evlyukhin AB, Bozhevolnyi SI, Stepanov AL, Kiyan R, Reinhardt C, Passinger S, Chichkov BN (2007) Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles. Opt Express 15:16667–16680

    Article  CAS  Google Scholar 

  5. Kiyan R, Reinhardt C, Passinger S, Stepanov AL, Hohenau A, Krenn JR, Chichkov BN (2007) Rapid prototyping of optical components for surface plasmon polaritons. Opt Express 15:4205–4215

    Article  Google Scholar 

  6. Radko IP, Bozhevolnyi SI, Brucoli G, Martin-Moreno L, Garcia-Vidal FJ, Boltasseva A (2009) Efficient unidirectional ridge excitation of surface plasmons. Opt Express 17:7228–7232

    Article  CAS  Google Scholar 

  7. Zhang DG, Yuan XC, Bu J, Yuan GH, Wang Q, Lin J, Zhang XJ, Wang P, Ming H, Mei T (2009) Surface plasmon converging and diverging properties modulated by polymer refractive structures on metal films. Opt Express 17:11315–11320

    Article  CAS  Google Scholar 

  8. Ditlbacher H, Krenn JR, Schider G, Leitner A, Aussenegg FR (2002) Two-dimensional optics with surface plasmon polaritons. Appl Phys Lett 81:1762–1764

    Article  CAS  Google Scholar 

  9. Drezet A, Hohenau A, Stepanov AL, Ditlbacher H, Steinberger B, Aussenegg FR, Leitner A, Krenn JR (2006) Surface plasmon polariton Mach-Zehnder interferometer and oscillation fringes. Plasmonics 1:141–145

    Article  CAS  Google Scholar 

  10. Yin LL, Vlasko-Vlasov VK, Pearson J, Hiller JM, Hua J, Welp U, Brown DE, Kimball CW (2005) Subwavelength focusing and guiding of surface plasmons. Nano Lett 5:1399–1402

    Article  CAS  Google Scholar 

  11. Nomura W, Ohtsu M, Yatsui T (2005) Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion. Appl Phys Lett 86:181108

    Article  Google Scholar 

  12. Drezet A, Stepanov AL, Ditlbacher H, Hohenau A, Steinberger B, Aussenegg FR, Leitner A, Krenn JR (2005) Surface plasmon propagation in an elliptical corral. Appl Phys Lett 86:3

    Google Scholar 

  13. Sterligov VA, Kretschmann M (2005) Scattering of surface electromagnetic waves by Sn nanoparticles. Opt Express 13:4134–4140

    Article  CAS  Google Scholar 

  14. Kim H, Hahn J, Lee B (2008) Focusing properties of surface plasmon polariton floating dielectric lenses. Opt Express 16:3049–3057

    Article  Google Scholar 

  15. Wang Q, Yuan XC, Tan PS, Zhang DG (2008) Phase modulation of surface plasmon polaritons by surface relief dielectric structures. Opt Express 16:19271–19276

    Article  CAS  Google Scholar 

  16. Fang ZY, Qi H, Wang C, Zhu X (2010) Hybrid plasmonic waveguide based on tapered dielectric nanoribbon: excitation and focusing. Plasmonics 5:207–212

    Article  CAS  Google Scholar 

  17. Teperik TV, Archambault A, Marquier F, Greffet JJ (2009) Huygens-Fresnel principle for surface plasmons. Opt Express 17:17483–17490

    Article  CAS  Google Scholar 

  18. Lin WC, Liao LS, Chen H, Chang HC, Tsai DP, Chiang HP (2011) Size dependence of nanoparticle-SERS enhancement from silver film over nanosphere (AgFON) substrate. Plasmonics 6:201–206

    Article  CAS  Google Scholar 

  19. Felidj N, Laurent G, Grand J, Aubard J, Levi G, Hohenau A, Aussenegg FR, Krenn JR (2006) Far-field Raman imaging of short-wavelength particle plasmons on gold nanorods. Plasmonics 1:35–39

    Article  CAS  Google Scholar 

  20. Chen MW, Chau YF, Tsai DP (2008) Three-dimensional analysis of scattering field interactions and surface plasmon resonance in coupled silver nanospheres. Plasmonics 3:157–164

    Article  Google Scholar 

  21. Chung HY, Leung PT, Tsai DP (2010) Enhanced intermolecular energy transfer in the vicinity of a plasmonic nanorice. Plasmonics 5:363–368

    Article  Google Scholar 

  22. Yi M, Zhang D, Wen X, Fu Q, Wang P, Lu Y, Ming H (2011) Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film. Plasmonics 6(2):213–217

    Article  CAS  Google Scholar 

  23. Chau Y-F, Jiang Z-H (2011) Plasmonics effects of nanometal embedded in a dielectric substrate. Plasmonics 6(3):581–589

    Article  CAS  Google Scholar 

  24. Chau Y-F, Chen MW, Yeh H-H, Wu F-L, Li H-Y, Tsai DP (2011) Highly enhanced surface plasmon resonance in a coupled silver nanodumbbell. Appl Phys A 104(3):801–805

    Article  CAS  Google Scholar 

  25. Peng TC, Lin WC, Chen CW, Tsai DP, Chiang HP (2011) Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using silver nanoparticles. Plasmonics 6:29–34

    Article  CAS  Google Scholar 

  26. Sanchez-Gil JA, Maradudin AA (1999) Near-field and far-field scattering of surface plasmon polaritons by one-dimensional surface defects. Phys Rev B 60:8359–8367

    Article  CAS  Google Scholar 

  27. Shchegrov AV, Novikov IV, Maradudin AA (1997) Scattering of surface plasmon polaritons by a circularly symmetric surface defect. Phys Rev Lett 78:4269–4272

    Article  CAS  Google Scholar 

  28. Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314

    Article  CAS  Google Scholar 

  29. Kawazoe T, Yatsui T, Ohtsu M (2006) Nanophotonics using optical near fields. J Non-Cryst Solids 352:2492–2495

    Article  CAS  Google Scholar 

  30. Chu CH, Chiun CD, Cheng HW, Tseng ML, Chiang HP, Mansuripur M, Tsai DP (2010) Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography. Opt Express 18:18383–18393

    Article  CAS  Google Scholar 

  31. Chang CM, Chu CH, Tseng ML, Chiang HP, Mansuripur M, Tsai DP (2011) Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films. Opt Express 19:9492–9504

    Article  CAS  Google Scholar 

  32. Chu CH, Tseng ML, Shiue CD, Chen SW, Chiang HP, Mansuripur M, Tsai DP (2011) Fabrication of phase-change Ge2Sb2Te5 nano-rings. Opt Express 19:12652–12657

    Article  CAS  Google Scholar 

  33. Huang HJ, Yu CP, Chang HC, Chiu KP, Chen HM, Liu RS, Tsai DP (2007) Plasmonic optical properties of a single gold nano-rod. Opt Express 15(12):7132–7139

    Article  CAS  Google Scholar 

  34. Chiu KP, Tsai DP (2005) Near-field interactions between light and surface plasmons of a metal slab. J Korean Phys Soc 47:S119–S122

    CAS  Google Scholar 

  35. Samson Z, Yen SC, Macdonald KF, Knight K, Li S, Hewak DW, Tsai DP, Zheludev NI (2010) Chalcogenide glasses in active plasmonics. Phys Status Solidi RRL 4:274

    Article  CAS  Google Scholar 

  36. Chen WT, Wu PC, Chen CJ, Chung HY, Chau YF, Kuan CH, Tsai DP (2010) Electromagnetic energy vortex associated with sub-wavelength plasmonic Taiji marks. Opt Express 18:19665–19671

    Article  CAS  Google Scholar 

  37. Chen WT, Chen CJ, Wu PC, Sun S, Zhou L, Guo GY, Hsiao CT, Yang KY, Zheludev NI, Tsai DP (2011) Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules. Opt Express 19:12837–12842

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Science Council, Taiwan, for the financial support of this project under grant numbers 99-2911-I-002-127, 99-2120-M-002-012, 100-2923-M-002-007-MY3, and 100-2120-M-002-008. They also thank the Molecular Imaging Center of the National Taiwan University for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Din Ping Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, C.M., Chu, C.H., Tseng, M.L. et al. Light Manipulation by Gold Nanobumps. Plasmonics 7, 563–569 (2012). https://doi.org/10.1007/s11468-012-9343-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9343-7

Keywords

Navigation