Skip to main content
Log in

Hybrid Dielectric-Loaded Plasmonic Waveguide-Based Power Splitter and Ring Resonator: Compact Size and High Optical Performance for Nanophotonic Circuits

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The key challenge of the plasmonic waveguide is to achieve simultaneously both the long propagation length and high confinement. The hybrid dielectric-loaded plasmonic waveguide consists of a SiO2 stripe sandwiched between a Si-nanowire and a silver film and thus promises as a best candidate to overcome this challenge. We propose to exploit this unique property of this structure to design different high-efficient silicon-based plasmonic components including waveguide, power splitter, and wavelength-selective ring resonator. As a result, the proposed power splitter with a waveguide cross section (λ 2/60) and a strong mode confinement area (~λ 2/240) features a low power transmission loss (<0.4 dB) at the optimal arm length of 4 μm with respect to different separation distances of output arms. Moreover, we also demonstrate that a plasmonic ring resonator with a compact ring radius of 2 μm may achieve high optical performance such as high-extinction ratio of 30 dB, large free spectral range of 67 nm, and small bandwidth of 0.6 nm. These superior performances make them promising building blocks for integrated nanophotonic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Reed GT, Knights AP (2004) Silicon photonics: an introduction. John Wiley and Sons, 1st Edition

  2. Soref R (2006) The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron 12:1678–1687

    Article  CAS  Google Scholar 

  3. Krauss TF, De La Rue RM (1999) Photonic crystals in the optical regime—past, present and future. Progr Quant Electron 23:51–96

    Article  CAS  Google Scholar 

  4. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  5. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photon 4:83–91

    Article  CAS  Google Scholar 

  6. Berini P (2001) Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures. Phys Rev B 63:125417–125431

    Article  Google Scholar 

  7. Rosenzveig T, Hermannsson PG, Leosson K (2010) Modelling of polarization-dependent loss in plasmonic nanowire waveguides. Plasmonics 5:75–77

    Article  CAS  Google Scholar 

  8. Quinten M, Leitner A, Krenn JR, Aussenegg FR (1998) Electromagnetic energy transport via linear chains of silver nanoparticles. Opt Lett 23:1331–1333

    Article  CAS  Google Scholar 

  9. Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AAG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2:229–232

    Article  CAS  Google Scholar 

  10. Bozhevolnyi SI, Volkov VS, Devaux D, Laluet JY, Ebbesen TW (2005) Channel plasmon-polariton guiding by subwavelength waveguide metal grooves. Phys Rev Lett 95:046802–046805

    Article  Google Scholar 

  11. Bozhevolnyi SI, Jung J (2008) Scaling gap for plasmon based waveguides (2008). Optic Express 16:2676–2684

    Article  Google Scholar 

  12. Economou EN (1969) Surface plasmons in thin films. Phys Rev 182:539–554

    Article  Google Scholar 

  13. Tanaka K, Tanaka M (2003) Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Appl Phys Lett 82:1158–1160

    Article  CAS  Google Scholar 

  14. Steinberger B, Hohenau A, Ditlbacher H, Aussenegg FR, Krenn JR (2007) Appl Phys Lett 91:081111–081113

    Article  Google Scholar 

  15. Krasavin V, Zayats AV (2008) Three-dimensional numerical modelling of photonic integration with dielectric-loaded SPP waveguides. Phys Rev B 78:045425–045432

    Article  Google Scholar 

  16. Chu HS, Ewe WB, Li EP (2009) Tunable propagation of light through a coupled-bent dielectric-loaded plasmonic waveguides. J Appl Phys 106:106101–106103

    Article  Google Scholar 

  17. Passinger S, Seidel A, Ohrt C, Reinhardt C, Stepanov A, Kiyan R, Chichkov B (2008) Novel efficient design of Y-splitter for surface plasmon polariton applications. Optic Express 16:14369–14379

    Article  Google Scholar 

  18. Veronis G, Fan S (2008) Crosstalk between three-dimensional plasmonic slot waveguides. Optic Express 16:2129–2140

    Article  Google Scholar 

  19. Boltasseva A, Bozhevolnyi SI, Søndergaard T, Nikolajsen T, Leosson K (2005) Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons. Optic Express 13:4237–4243

    Article  Google Scholar 

  20. Lee PH, Lan YC (2010) Plasmonic waveguide filters based on tunneling and cavity effects. Plasmonics 5:417–422

    Article  CAS  Google Scholar 

  21. Volkov VS, Bozhevolnyi SI, Devaux E, Laluet JY, Ebbesen TW (2007) Wavelength selective nanophotonic components utilizing channel plasmon polaritons. Nano Letters 7:880–884

    Article  CAS  Google Scholar 

  22. Holmgaard T, Chen Z, Bozhevolnyi SI, Markey L, Dereux A, Krasavin AV, Zayats A (2009) Wavelength selection by dielectric-loaded plasmonic components. Appl Phys Lett 94:051111–051113

    Article  Google Scholar 

  23. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508–511

    Article  CAS  Google Scholar 

  24. Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photon 2:496–500

    Article  CAS  Google Scholar 

  25. Chu HS, Li EP, Bai P, Hegde R (2010) Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components. Appl Phys Lett 96:221103–222105

    Article  Google Scholar 

  26. Tian J, Ma Z, Li Q, Song Y, Liu Z, Yang Q, Zha C, Akerman J, Tong L, Qiu M (2010) Nanowaveguides and couplers based on hybrid plasmonic modes. Appl Phys Lett 97:231121–231123

    Article  Google Scholar 

  27. Alam MZ, Meier J, Aitchison JS, Mojahedi M (2010) Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Optic Express 18:12971–12979

    Article  CAS  Google Scholar 

  28. Xiao YF, Li BB, Jiang X, Hu XY, Li Y, Gong QH (2010) High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip. J Phys B Atom Mol Opt Phys 43:035402–035406

    Article  Google Scholar 

  29. Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature 461:629–632

    Article  CAS  Google Scholar 

  30. Ma RM, Oulton RF, Sorger VJ, Bartal G, Zhang X (2011) Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat Mater 10:110–113

    Article  CAS  Google Scholar 

  31. Zhu Z, Brown TG (2002) Full-vectorial finite-difference analysis of microstructured optical fibers. Optic Express 10:853–864

    Google Scholar 

  32. Almeida VR, Xu Q, Barrios A, Lipson M (2004) Guiding and confining light in void nanostructure. Opt Lett 29:1209–1211

    Article  Google Scholar 

  33. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  34. Dionne JA, Sweatlock LA, Atwater HA, Polman A (2005) Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys Rev B 72:075405–075415

    Article  Google Scholar 

  35. Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method, 3rd edn. Artech House, Boston

    Google Scholar 

  36. Yariv A (2000) Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron Lett 36:321–322

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Agency for Science and Technology Research (A*STAR), Singapore, Metamaterials-Nanoplasmonics research programme under A*STAR-SERC grant no. 0921540098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Son Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, HS., Bai, P., Li, EP. et al. Hybrid Dielectric-Loaded Plasmonic Waveguide-Based Power Splitter and Ring Resonator: Compact Size and High Optical Performance for Nanophotonic Circuits. Plasmonics 6, 591–597 (2011). https://doi.org/10.1007/s11468-011-9239-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9239-y

Keywords

Navigation