Skip to main content
Log in

Triangular Au–Ag Nanoframes with Tunable Surface Plasmon Resonance Signal from Visible to Near-Infrared Region

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In recent years, metal hollow nanostructures are intriguing to be synthesized and studied because they exhibit unique surface plasmonic properties. Although many methods for tuning the surface plasmonic absorption peaks of silver nanostructures have been reported, it still remains a great challenge to produce hollow Ag nanostructure with controllable surface plasmon resonance (SPR) via a facile method. In this paper, triangular Au–Ag nanoframes were successfully fabricated using triangular silver nanoplates as templates, through galvanic replacement reaction between the silver nanoplates and HAuCl4, exhibiting tuneable SPR response from visible (605 nm) to near-infrared region (1,235 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sun YG, Xia YN (2004) Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J Am Chem Soc 126(12):3892–3901

    Article  CAS  Google Scholar 

  2. Kim SW, Kim M, Lee WY, Hyeon T (2002) Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions. J Am Chem Soc 124(26):7642–7643

    Article  CAS  Google Scholar 

  3. Oldenburg SJ, Hale GD, Jackson JB, Halas NJ (1999) Light scattering from dipole and quadrupole nanoshell antennas. Appl Phys Lett 75(8):1063–1065

    Article  CAS  Google Scholar 

  4. Chen JY, Wiley BJ, McLellan J, Xiong YJ, Li ZY, Xia Y (2005) Optical properties of Pd–Ag and Pt–Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett 5(10):2058–2062

    Article  CAS  Google Scholar 

  5. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179

    Article  CAS  Google Scholar 

  6. Yang J, Lee JY, Too H-P (2005) Core–shell Ag–Au nanoparticles from replacement reaction in organic medium. J Phys Chem B 109(41):19208–19212

    Article  CAS  Google Scholar 

  7. Chen J, McLellan JM, Siekkinen A, Xiong Y, Li ZY, Xia Y (2006) Facile synthesis of gold–silver nanocages with controllable pores on the surface. J Am Chem Soc 128(46):14776–14777

    Article  CAS  Google Scholar 

  8. Yin YD, Erdonmez C, Aloni S, Alivisatos AP (2006) Faceting of nanocrystals during chemical transformation:from solid silver spheres to hollow gold octahedra. J Am Chem Soc 128(39):12671–12673

    Article  CAS  Google Scholar 

  9. Sun Y, Xia Y (2002) Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv Mater 14(11):833–837

    Article  CAS  Google Scholar 

  10. Sun Y, Gates B, Mayers B, Xia Y (2002) Crystalline silver nanowires by soft solution processing. Nano Lett 2(2):165–168

    Article  CAS  Google Scholar 

  11. Sun Y, Yin Y, Mayers BT, Herricks T, Xia Y (2002) Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14(11):4736–4745

    Article  CAS  Google Scholar 

  12. Murphy CJ, Jana NR (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14(1):80–82

    Article  CAS  Google Scholar 

  13. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun 7:617–618

    Article  Google Scholar 

  14. Jin RC, Cao YW, Mirkin CA (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294(5548):1901–1904

    Article  CAS  Google Scholar 

  15. Sun Y, Mayers B, Xia Y (2003) Metal nanostructures with hollow interiors. Adv Mater 15(7–8):641–646

    Article  CAS  Google Scholar 

  16. Lu XM, Au L, McLellan J, Li ZY, Marquez M, Xia YN (2007) Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)3 or NH4OH. Nano Lett 7(6):1764–1769

    Article  CAS  Google Scholar 

  17. Portney NG, Ozkan M (2006) Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem 384(3):620–630

    Article  CAS  Google Scholar 

  18. Cang H, Sun T, Li ZY, Chen J, Wiley BJ, Xia Y, Li X (2005) Gold nanocages as contrast agents for spectroscopic optical coherence tomography. Opt Lett 30(32):3048–3050

    Article  CAS  Google Scholar 

  19. Hirsch LR, Gobin AM, Lowery AR, Tam F, Drezek RA, Halas NJ, West JL (2006) Metal nanoshells. Ann Biomed Eng 34(1):15–22

    Article  Google Scholar 

  20. Chen JY, Wiley BJ, Li ZY, Campbell D, Saeki F, Cang H, Au L, Lee J, Li XD, Xia YN (2005) Gold nanocages: engineering their structure for biomedical applications. Adv Mater 17(18):2255–2261

    Article  CAS  Google Scholar 

  21. Weissleder R (2001) Clearer vision for in vivo imaging. Nat Biotechnol 19(4):316–317

    Article  CAS  Google Scholar 

  22. Metraux GS, Mirkin CA (2005) Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv Mater 17(4):412–415

    Article  CAS  Google Scholar 

  23. Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104(6):1153–1175

    Article  CAS  Google Scholar 

  24. Brousseau LC, Novak JP, Marinakos SM, Feldheim DL (1999) Assembly of phenylacetylene-bridged gold nanocluster dimers and trimers. Adv Mater 11(6):447–449

    Article  CAS  Google Scholar 

  25. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081

    Article  CAS  Google Scholar 

  26. Tessier PM, Velev OD, Kalambur AT, Rabolt JF, Lenhoff AM, Kaler EW (2001) Structured metallic films for optical and spectroscopic applications via colloidal crystal templating. Adv Mater 13(6):396–400

    Article  CAS  Google Scholar 

  27. Pastoriza-Santos I, Liz-Marzán LM (2002) Synthesis of silver nanoprisms in DMF. Nano Lett 2(8):903–905

    Article  CAS  Google Scholar 

  28. Sun YG, Xia YN (2002) Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal Chem 74(20):5297–5305

    Article  CAS  Google Scholar 

  29. Jackson JB, Halas NJ (2001) Silver nanoshells: variations in morphologies and optical properties. J Phys Chem B 105(14):2743–2746

    Article  CAS  Google Scholar 

  30. An J, Tang B, Zheng XL, Zhou J, Dong FX, Xu SP, Wang Y, Zhao B, Xu WQ (2008) Sculpturing effect of chloride ions in shape transformation from triangular to discal silver nanoplates. J Phys Chem C 112(39):15176–15182

    Article  CAS  Google Scholar 

  31. Fadley CS, Shirley DA (1970) Electronic densities of states from X-ray photoelectron spectroscopy. J Res Natl Bur Stand A 74(4):543–545

    CAS  Google Scholar 

  32. Jaramillo TF, Baeck S-H, Cuenya BR, McFarland EW (2003) Catalytic activity of supported Au nanoparticles deposited from block copolymer micelles. J Am Chem Soc 125(24):7148–7149

    Article  CAS  Google Scholar 

  33. NIST X-ray Photoelectron spectroscopy database, ver.2.0. National Institute of Standards and Technology (NIST). Gaithersburg, MD, 1997.

Download references

Acknowledgments

This study was supported by Development Program of Science and Technology of Beijing Municipal Education Commission (KM200810028010) and Funding Project for Academic human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHR20100718).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanfang Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Si, G., Ma, Z., Li, K. et al. Triangular Au–Ag Nanoframes with Tunable Surface Plasmon Resonance Signal from Visible to Near-Infrared Region. Plasmonics 6, 241–244 (2011). https://doi.org/10.1007/s11468-010-9194-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-010-9194-z

Keywords

Navigation