Skip to main content
Log in

Morphological transformations of diblock copolymers in binary solvents: A simulation study

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Morphological transformations of amphiphilic AB diblock copolymers in mixtures of a common solvent (S1) and a selective solvent (S2) for the B block are studied using the simulated annealing method. We focus on the morphological transformation depending on the fraction of the selective solvent C S2, the concentration of the polymer C p , and the polymer–solvent interactions ε ij (i = A, B; j = S1, S2). Morphology diagrams are constructed as functions of C p , C S2, and/or ε AS2. The copolymer morphological sequence from dissolved → sphere → rod → ring/cage → vesicle is obtained upon increasing C S2 at a fixed C p . This morphology sequence is consistent with previous experimental observations. It is found that the selectivity of the selective solvent affects the self-assembled microstructure significantly. In particular, when the interaction ε BS2 is negative, aggregates of stacked lamellae dominate the diagram. The mechanisms of aggregate transformation and the formation of stacked lamellar aggregates are discussed by analyzing variations of the average contact numbers of the A or B monomers with monomers and with molecules of the two types of solvent, as well as the mean square end-to-end distances of chains. It is found that the basic morphological sequence of spheres to rods to vesicles and the stacked lamellar aggregates result from competition between the interfacial energy and the chain conformational entropy. Analysis of the vesicle structure reveals that the vesicle size increases with increasing C p or with decreasing C S2, but remains almost unchanged with variations in ε AS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Jenekhe and X. L. Chen, Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes, Science 279(5358), 1903 (1998)

    Article  ADS  Google Scholar 

  2. R. Stoenescu, A. Graff, and W. Meier, Asymmetric ABC-triblock copolymer membranes induce a directed insertion of membrane protein, Macromol. Biosci. 4(10), 930 (2004)

    Article  Google Scholar 

  3. R. Stoenescu and W. Meier, Vesicles with asymmetric membranes from amphiphilic ABC triblock copolymers, Chem. Commun. 24(24), 3016 (2002)

    Article  Google Scholar 

  4. Y. F. Zhou and D. Y. Yan, Real-time membrane fusion of giant polymer vesicles, J. Am. Chem. Soc. 127(30), 10468 (2005)

    Article  Google Scholar 

  5. Y. F. Zhou and D. Y. Yan, Real-time membrane fission of giant polymer vesicles, Angew. Chem. Int. Ed. 44(21), 3223 (2005)

    Article  Google Scholar 

  6. R. Savic, L. B. Luo, A. Eisenberg, and D. Maysinger, Micellar nanocontainers distribute to defined cytoplasmic organelles, Science 300(5619), 615 (2003)

    Article  ADS  Google Scholar 

  7. C. Allen, D. Maysinger, and A. Eisenberg, Nanoengineering block copolymer aggregates for drug delivery, Colloids Surf. B Biointerfaces 16(1–4), 3 (1999)

    Article  Google Scholar 

  8. L. F. Zhang and A. Eisenberg, Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers, Science 268(5218), 1728 (1995)

    Article  ADS  Google Scholar 

  9. X. T. Shuai, H. Ai, N. Nasongkla, S. Kim, and J. M. Gao, Micellar carriers based on block copolymers of poly(e-caprolactone) and poly(ethylene glycol) for doxorubicin delivery, J. Control. Release 98(3), 415 (2004)

    Article  Google Scholar 

  10. H. Lomas, I. Canton, S. MacNeil, J. Du, S. P. Armes, A. J. Ryan, A. L. Lewis, and G. Battaglia, Biomimetic pH sensitive polymersomes for efficient DNA encapsulation and delivery, Adv. Mater. 19(23), 4238 (2007)

    Article  Google Scholar 

  11. X. B. Xiong, H. Uludag, and A. Lavasanifar, Biodegradable amphiphilic poly(ethylene oxide)-block-polyesters with grafted polyamines as supramolecular nanocarriers for efficient siRNA delivery, Biomaterials 30(2), 242 (2009)

    Article  Google Scholar 

  12. A. Blanazs, S. P. Armes, and A. J. Ryan, Self-assembled block copolymer aggregates: From micelles to vesicles and their biological applications, Macromol. Rapid Commun. 30(4–5), 267 (2009)

    Article  Google Scholar 

  13. K. J. Hanley, T. P. Lodge, and C. I. Huang, Phase behavior of a block copolymer in solvents of varying selectivity, Macromolecules 33(16), 5918 (2000)

    Article  ADS  Google Scholar 

  14. C. Lai, W. B. Russel, and R. A. Register, Phase behavior of Styrene–Isoprene diblock copolymers in strongly selective solvents, Macromolecules 35(3), 841 (2002)

    Article  ADS  Google Scholar 

  15. T. P. Lodge, B. Pudil, and K. J. Hanley, The full phase behavior for block copolymers in solvents of varying selectivity, Macromolecules 35(12), 4707 (2002)

    Article  ADS  Google Scholar 

  16. B. Yu, B. Li, P. Sun, T. Chen, Q. Jin, D. Ding, and A. C. Shi, Cylinder-gyroid-lamella transitions in diblock copolymer solutions: A simulated annealing study, J. Chem. Phys. 123(23), 234902 (2005)

    Article  ADS  Google Scholar 

  17. T. Suo, D. Yan, S. Yang, and A. C. Shi, A theoretical study of phase behaviors for diblock copolymers in selective solvents, Macromolecules 42(17), 6791 (2009)

    Article  ADS  Google Scholar 

  18. M. Antonietti and S. Forster, Vesicles and liposomes: A self-assembly principle beyond lipids, Adv. Mater. 15(16), 1323 (2003)

    Article  Google Scholar 

  19. D. J. Pochan, Z. Y. Chen, and H. G. Cui, Toroidal triblock copolymer assemblies, Science 306(5693), 94 (2004)

    Article  ADS  Google Scholar 

  20. X. S. Wang, G. Guerin, H. Wang, Y. S. Wang, I. Manners, and M. A. Winnik, Cylindrical block copolymer micelles and co-micelles of controlled length and architecture, Science 317(5838), 644 (2007)

    Article  ADS  Google Scholar 

  21. Y. Y. Mai and A. Eisenberg, Self-assembly of block copolymers, Chem. Soc. Rev. 41(18), 5969 (2012)

    Article  Google Scholar 

  22. H. W. Shen and A. Eisenberg, Morphological phase diagram for a ternary system of block copolymer PS310-b-PAA52/Dioxane/H2O, J. Phys. Chem. B 103(44), 9473 (1999)

    Article  Google Scholar 

  23. B. Du, A. Mei, K. Yin, Q. Zhang, J. Xu, and Z. Fan, Vesicle formation of PLAx–PEG44 diblock copolymers, Macromolecules 42(21), 8477 (2009)

    Article  Google Scholar 

  24. H. Huang, B. Chung, J. Jung, H. W. Park, and T. Chang, Toroidal micelles of uniform size from diblock copolymers, Angew. Chem. Int. Ed. 48(25), 4594 (2009)

    Article  Google Scholar 

  25. A. G. Denkova, P. H. H. Bomans, M.O. Coppens, N. A. J. M. Sommerdijk, and E. Mendes, Complex morphologies of self-assembled block copolymer micelles in binary solvent mixtures: The role of solvent–solvent correlations, Soft Matter 7(14), 6622 (2011)

    Article  ADS  Google Scholar 

  26. S. Zhong, H. Cui, Z. Chen, K. L. Wooley, and D. J. Pochan, Helix self-assembly through the coiling of cylindrical micelles, Soft Matter 4(1), 90 (2008)

    Article  ADS  Google Scholar 

  27. D. H. Han, X. Y. Li, S. Hong, H. Jinnai, and G. J. Liu, Morphological transition of triblock copolymer cylindrical micelles responding to solvent change, Soft Matter 8(7), 2144 (2012)

    Article  ADS  Google Scholar 

  28. B. E. McKenzie, J. F. de Visser, H. Friedrich, M. J. M. Wirix, P. H. H. Bomans, G. de With, S. J. Holder, and N. A. J. M. Sommerdijk, Bicontinuous nanospheres from simple amorphous amphiphilic diblock copolymers, Macromolecules 46(24), 9845 (2013)

    Article  ADS  Google Scholar 

  29. P. Sun, Y. Yin, B. Li, T. Chen, Q. Jin, D. Ding, and A.C. Shi, Simulated annealing study of morphological transitions of diblock copolymers in solution, J. Chem. Phys. 122(20), 204905 (2005)

    Article  ADS  Google Scholar 

  30. R. Wang, Z. Jiang, and G. Xue, Excluded volume effect on the self-assembly of amphiphilic AB diblock copolymer in dilute solution, Polymer 52(10), 2361 (2011)

    Article  Google Scholar 

  31. J. Cui and W. Jiang, Vesicle formation and microphase behavior of amphiphilic ABC triblock copolymers in selective solvents: A Monte Carlo study, Langmuir 26(16), 13672 (2010)

    Article  Google Scholar 

  32. J. Cui and W. Jiang, Structure of ABCA tetrablock copolymer vesicles and their formation in selective solvents: A Monte Carlo study, Langmuir 27(16), 10141 (2011)

    Article  Google Scholar 

  33. J. Cui, Y. Y. Han, and W. Jiang, Asymmetric vesicle constructed by AB/CB diblock copolymer mixture and its behavior: A Monte Carlo study, Langmuir 30(30), 9219 (2014)

    Article  Google Scholar 

  34. P. T. He, X. J. Li, M. G. Deng, T. Chen, and H. J. Liang, Complex micelles from the self-assembly of coilrod-coil amphiphilic triblock copolymers in selective solvents, Soft Matter 6(7), 1539 (2010)

    Article  ADS  Google Scholar 

  35. W. Kong, B. Li, Q. Jin, D. Ding, and A. C. Shi, Helical vesicles, segmented semivesicles, and noncircular bilayer sheets from solution-state self-assembly of ABC Miktoarm star terpolymers, J. Am. Chem. Soc. 131(24), 8503 (2009)

    Article  Google Scholar 

  36. C. I. Huang and Y. C. Hsu, Effects of solvent immiscibility on the phase behavior and microstructural length scales of a diblock copolymer in the presence of two solvents, Phys. Rev. E 74(5), 051802 (2006)

    Article  ADS  Google Scholar 

  37. I. Carmesin and K. Kremer, The bond fluctuation method: A new effective algorithm for the dynamics of polymers in all spatial dimensions, Macromolecules 21(9), 2819 (1988)

    Article  ADS  Google Scholar 

  38. R. G. Larson, Self-assembly of surfactant liquid crystalline phases by Monte Carlo simulation, J. Chem. Phys. 91(4), 2479 (1989)

    Article  ADS  Google Scholar 

  39. R. G. Larson, Monte Carlo simulation of microstructural transitions in surfactant systems, J. Chem. Phys. 96(11), 7904 (1992)

    Article  ADS  Google Scholar 

  40. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21(6), 1087 (1953)

    Article  ADS  Google Scholar 

  41. X. He and F. Schmid, Spontaneous formation of complex micelles from a homogeneous solution, Phys. Rev. Lett. 100(13), 137802 (2008)

    Article  ADS  Google Scholar 

  42. B. Xia, W. Li, and F. Qiu, Self-assembling behaviors of symmetric diblock copolymers in C homopolymers, Acta Chimi. Sin. 72(1), 30 (2014)

    Article  Google Scholar 

  43. H. Du, J. Zhu, and W. Jiang, Study of controllable aggregation morphology of ABA amphiphilic triblock copolymer in dilute solution by changing the solvent property, J. Phys. Chem. B 111(8), 1938 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21204040, 20904027, 21574071, 21528401, 20925414, and 91227121), the Program for Changjiang Scholars and Innovative Research Team in University of China (PCSIRT) (Grant No. IRT1257), and the 111 Project (Grant No. B16027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohui Li.

Additional information

arXiv: 1703.08913.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yin, Y., Jiang, R. et al. Morphological transformations of diblock copolymers in binary solvents: A simulation study. Front. Phys. 12, 128201 (2017). https://doi.org/10.1007/s11467-017-0678-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0678-6

Keywords

PACS numbers

Navigation