Skip to main content
Log in

Order parameter analysis of synchronization transitions on star networks

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The collective behaviors of populations of coupled oscillators have attracted significant attention in recent years. In this paper, an order parameter approach is proposed to study the low-dimensional dynamical mechanism of collective synchronizations, by adopting the star-topology of coupled oscillators as a prototype system. The order parameter equation of star-linked phase oscillators can be obtained in terms of the Watanabe–Strogatz transformation, Ott–Antonsen ansatz, and the ensemble order parameter approach. Different solutions of the order parameter equation correspond to the diverse collective states, and different bifurcations reveal various transitions among these collective states. The properties of various transitions in the star-network model are revealed by using tools of nonlinear dynamics such as time reversibility analysis and linear stability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer Science and Business Media, 2012

    MATH  Google Scholar 

  2. J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77(1), 137 (2005)

    Article  ADS  Google Scholar 

  3. S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D 143(1–4), 1 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge: Cambridge University Press, 2001

    Book  MATH  Google Scholar 

  5. S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Critical phenomena in complex networks, Rev. Mod. Phys. 80(4), 1275 (2008)

    Article  ADS  Google Scholar 

  6. A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Synchronization in complex networks, Phys. Rep. 469(3), 93 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  7. Z. Zheng, G. Hu, and B. Hu, Phase slips and phase synchronization of coupled oscillators, Phys. Rev. Lett. 81(24), 5318 (1998)

    Article  ADS  Google Scholar 

  8. Z. Zheng, G. Hu, and B. Hu, Collective phase slips and phase synchronizations in coupled oscillator systems, Phys. Rev. E 62(1), 402 (2000)

    Article  ADS  Google Scholar 

  9. D. A. Paley, N. E. Leonard, and R. Sepulchre, Oscillator models and collective motion: Splay state stabilization of self-propelled particles, in: Proc. 51st IEEE Conf. Decision Control, pp 3935–3940 (2005)

    Google Scholar 

  10. M. Silber, L. Fabiny, and K. Wiesenfeld, Stability results for in-phase and splay-phase states of solid-state laser arrays, J. Opt. Soc. Am. B 10(6), 1121 (1993)

    Article  ADS  Google Scholar 

  11. S. H. Strogatz and R. E. Mirollo, Splay states in globally coupled Josephson arrays: Analytical prediction of Floquet multipliers, Phys. Rev. E 47(1), 220 (1993)

    Article  ADS  Google Scholar 

  12. L. Lü, C. Li, W. Wang, Y. Sun, Y. Wang, and A. Sun, Study on spatiotemporal chaos synchronization among complex networks with diverse structures, Nonlinear Dyn. 77(1–2), 145 (2014)

    Article  MathSciNet  Google Scholar 

  13. J. Gómez-Gardeñes, S. Gomez, A. Arenas, and Y. Moreno, Explosive synchronization transitions in scalefree networks, Phys. Rev. Lett. 106(12), 128701 (2011)

    Article  ADS  Google Scholar 

  14. O. E. Omel’chenko and M. Wolfrum, Nonuniversal transitions to synchrony in the Sakaguchi–Kuramoto model, Phys. Rev. Lett. 109(16), 164101 (2012)

    Article  ADS  Google Scholar 

  15. D. Topaj and A. Pikovsky, Reversibility vs. synchronization in oscillator lattices, Physica D 170(2), 118 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. L. Zhou, C. Wang, Y. Lin, and H. He, Combinatorial synchronization of complex multiple networks with unknown parameters, Nonlinear Dyn. 79(1), 307 (2015)

    Article  MATH  Google Scholar 

  17. X. Zhang, X. Hu, J. Kurths, and Z. Liu, Explosive synchronization in a general complex network, Phys. Rev. E 88, 010802(R) (2013)

    Article  ADS  Google Scholar 

  18. Z. Zheng, Spatiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear Systems, Beijing: Higher Education Press, 2004 (in Chinese)

    Google Scholar 

  19. N. Yao and Z. Zheng, Chimera states in spatiotemporal systems: Theory and applications, Int. J. Mod. Phys. B 30(1), 163002 (2016)

    MathSciNet  Google Scholar 

  20. E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos 18(3), 037113 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. S. Watanabe and S. H. Strogatz, Integrability of a globally coupled oscillator array, Phys. Rev. Lett. 70(16), 2391 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. S. Watanabe and S. H. Strogatz, Constants of motion for superconducting Josephson arrays, Physica D 74(3–4), 197 (1994)

    Article  ADS  MATH  Google Scholar 

  23. J. Gao, C. Xu, Y. Sun, and Z. Zheng, Order parameter analysis for low-dimensional behaviors of coupled phase oscillators, Sci. Rep. 6, 30184 (2016)

    Article  ADS  Google Scholar 

  24. X. Hu, S. Boccaletti, W. Huang, X. Zhang, Z. Liu, S. Guan, and C. H. Lai, Exact solution for first-order synchronization transition in a generalized Kuramoto model, Sci. Rep. 4, 7262 (2014)

    Article  ADS  Google Scholar 

  25. I. Leyva, R. Sevilla-Escoboza, J. M. Buldu, I. Sendina-Nadal, J. Gomez-Gardenes, A. Arenas, Y. Moreno, S. Gomez, R. Jaimes-Reategui, and S. Boccaletti, Explosive first-order transition to synchrony in networked chaotic oscillators, Phys. Rev. Lett. 108(16), 168702 (2012)

    Article  ADS  Google Scholar 

  26. C. Xu, J. Gao, Y. Sun, X. Huang, and Z. Zheng, Explosive or continuous: Incoherent state determines the route to synchronization, Sci. Rep. 5, 12039 (2015)

    Article  ADS  Google Scholar 

  27. P. Li, K. Zhang, X. Xu, J. Zhang, and M. Small, Reexamination of explosive synchronization in scale-free networks: The effect of disassortativity, Phys. Rev. E 87(4), 042803 (2013)

    Article  ADS  Google Scholar 

  28. T. K. Peron and F. A. Rodrigues, Explosive synchronization enhanced by time-delayed coupling, Phys. Rev. E 86(1), 016102 (2012)

    Article  ADS  Google Scholar 

  29. P. Ji, T. K. Peron, P. J. Menck, F. A. Rodrigues, and J. Kurths, Cluster explosive synchronization in complex networks, Phys. Rev. Lett. 110(21), 218701 (2013)

    Article  ADS  Google Scholar 

  30. L. Zhang, J. Chen, B. Sun, Y. Tang, M. Wang, Y. Li, and S. Xue, Nonlinear dynamic evolution and control in a new scale-free networks modeling, Nonlinear Dyn. 76(2), 1569 (2014)

    Article  Google Scholar 

  31. I. Leyva, A. Navas, I. Sendina-Nadal, J. A. Almendral, J. M. Buldu, M. Zanin, D. Papo, and S. Boccaletti, Explosive transitions to synchronization in networks of phase oscillators, Sci. Rep. 3, 1281 (2013)

    Article  ADS  Google Scholar 

  32. C. Wang, A. Pumir, N. B. Garnier, and Z. Liu, Explosive synchronization enhances selectivity: Example of the cochlea, Front. Phys. 12(5), 128901 (2017)

    Article  Google Scholar 

  33. A. Bergner, M. Frasca, G. Sciuto, A. Buscarino, E. J. Ngamga, L. Fortuna, and J. Kurths, Remote synchronization in star networks, Phys. Rev. E 85(2), 026208 (2012)

    Article  ADS  Google Scholar 

  34. O. Burylko, Y. Kazanovich, and R. Borisyuk, Bifurcations in phase oscillator networks with a central element, Physica D 241(12), 1072 (2012)

    Article  ADS  MATH  Google Scholar 

  35. S. J. S. Theesar, M. R. K. Ariffin, and S. Banerjee, Synchronization and a secure communication scheme using optical star network, Opt. Laser Technol. 54, 15 (2013)

    Article  ADS  Google Scholar 

  36. V. Vlasov, A. Pikovsky, and E. E. N. Macau, Star-type oscillatory networks with generic Kuramoto-type coupling: A model for Japanese drums synchrony, Chaos 25(12), 123120 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  37. C. Xu, Y. Sun, J. Gao, T. Qiu, Z. Zheng, and S. Guan, Synchronization of phase oscillators with frequencyweighted coupling, Sci. Rep. 6, 21926 (2016)

    Article  ADS  Google Scholar 

  38. C. Xu, H. Xiang, J. Gao, and Z. Zheng, Collective dynamics of identical phase oscillators with high-order coupling, Sci. Rep. 6, 31133 (2016)

    Article  ADS  Google Scholar 

  39. X. Huang, J. Gao, Y. Sun, Z. Zheng, and C. Xu, Effects of frustration on explosive synchronization, Front. Phys. 11(6), 110504 (2016)

    Article  Google Scholar 

  40. C. J. Goebel, Comment on “Constants of motion for superconductor arrays”, Physica D 80(1–2), 18 (1995)

    Article  ADS  MATH  Google Scholar 

  41. S. A. Marvel, R. E. Mirollo, and S. H. Strogatz, Identical phase oscillators with global sinusoidal coupling evolve by Möbius group action, Chaos 19(4), 043104 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. H. Sakaguchi and Y. Kuramoto, A soluble active rotater model showing phase transitions via mutual entertainment, Prog. Theor. Phys. 76(3), 576 (1986)

    Article  ADS  Google Scholar 

  43. S. A. Marvel and S. H. Strogatz, Invariant submain-fold for series arrays of Josephson junctions, Chaos 19(1), 013132 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. F. Dorfler and F. Bullo, Exploring synchronization in complex oscillator networks, in: Proc. 51st IEEE Conf. Decision Control, pp 7157–7170 (2012)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 11075016 and 11475022) and the Scientific Research Funds of Huaqiao University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Can Xu or Zhi-Gang Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HB., Sun, YT., Gao, J. et al. Order parameter analysis of synchronization transitions on star networks. Front. Phys. 12, 120504 (2017). https://doi.org/10.1007/s11467-017-0651-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0651-4

Keywords

PACS numbers

Navigation