Skip to main content
Log in

Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Chiral anomaly-induced negative magnetoresistance (NMR) has been widely used as critical transport evidence for the existence of Weyl fermions in topological semimetals. In this mini-review, we discuss the general observation of NMR phenomena in non-centrosymmetric NbP and NbAs. We show that NMR can arise from the intrinsic chiral anomaly of Weyl fermions and/or extrinsic effects, such as the superimposition of Hall signals; field-dependent inhomogeneous current flow in the bulk, i.e., current jetting; and weak localization (WL) of coexistent trivial carriers. The WL-controlled NMR is heavily dependent on sample quality and is characterized by a pronounced crossover from positive to negative MR growth at elevated temperatures, resulting from the competition between the phase coherence time and the spin-orbital scattering constant of the bulk trivial pockets. Thus, the correlation between the NMR and the chiral anomaly need to be scrutinized without the support of complimentary techniques. Because of the lifting of spin degeneracy, the spin orientations of Weyl fermions are either parallel or antiparallel to the momentum, which is a unique physical property known as helicity. The conservation of helicity provides strong protection for the transport of Weyl fermions, which can only be effectively scattered by magnetic impurities. Chemical doping with magnetic and non-magnetic impurities is thus more convincing than the NMR method for detecting the existence of Weyl fermions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. R. Wallace, The band theory of graphite, Phys. Rev. 71(9), 622 (1947)

    Article  ADS  MATH  Google Scholar 

  2. H. Weyl, Elektron und gravitation. I, Z. Phys. 56(5–6), 330 (1929)

    Article  ADS  MATH  Google Scholar 

  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)

    Article  ADS  Google Scholar 

  4. Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)

    Article  ADS  Google Scholar 

  5. M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)

    Article  ADS  Google Scholar 

  6. X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)

    Article  ADS  Google Scholar 

  7. S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Dirac semimetal in three dimensions, Phys. Rev. Lett. 108(14), 140405 (2012)

    Article  ADS  Google Scholar 

  8. Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Threedimensional Dirac semimetal and quantum transport in Cd3As2, Phys. Rev. B 88(12), 125427 (2013)

    Article  ADS  Google Scholar 

  9. L. Tian, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2, Nat. Mater. 14, 280 (2015)

    ADS  Google Scholar 

  10. X. G. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B 83(20), 205101 (2011)

    Article  ADS  Google Scholar 

  11. H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides, Phys. Rev. X 5(1), 011029 (2015)

    Google Scholar 

  12. S. Huang, S. Y. Xu, I. Belopolski, C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin, and M. Z. Hasan, A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class, Nat. Commun. 6, 7373 (2015)

    Article  Google Scholar 

  13. G. Bian, T. R. Chang, R. Sankar, S. Y. Xu, H. Zheng, T. Neupert, C. K. Chiu, S. M. Huang, G. Chang, I. Belopolski, D. S. Sanchez, M. Neupane, N. Alidoust, C. Liu, B.K. Wang, C.-C. Lee, H.- T. Jeng, A. Bansil, F. Chou, H. Lin, and M. Z. Hasan, Topological nodalline fermions in the non-centrosymmetric superconductor compound PbTaSe2, arXiv: 1505.03069 (2015)

    Google Scholar 

  14. G. B. Halász and L. Balents, Time-reversal invariant realization of the Weyl semimetal phase, Phys. Rev. B 85(3), 035103 (2012)

    Article  ADS  Google Scholar 

  15. S.Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T.R. Chang, H. Zheng, V. N. Strocov, D. S. Sanchez, G. Chang, C. Zhang, D. Mou, Y. Wu, L. Huang, C.C. Lee, S.M. Huang, B. K. Wang, A. Bansil, H.T. Jeng, T. Neupert, A. Kaminski, H. Lin, S. Jia, and M. Z. Hasan, Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide, Nat. Phys. 11(9), 748 (2015)

    Article  Google Scholar 

  16. B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X 5(3), 031013 (2015)

    Google Scholar 

  17. B. Q. Lv, S. Muff, T. Qian, Z. D. Song, S. M. Nie, N. Xu, P. Richard, C. E. Matt, N. C. Plumb, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, J. H. Dil, J. Mesot, M. Shi, H. M. Weng, and H. Ding, Observation of Fermiarc spin texture in TaAs, Phys. Rev. Lett. 115, 217601 (2015)

    Article  ADS  Google Scholar 

  18. S. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C. C. Lee, S. M. Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science 349(6248), 613 (2015)

    Article  ADS  Google Scholar 

  19. C. Zhang, Z. Yuan, S. Xu, Z. Lin, B. Tong, M. Z. Hasan, J. Wang, C. Zhang, and S. Jia, Tantalum monoarsenide: An exotic compensated semimetal, arXiv: 1502.00251 (2015)

    Google Scholar 

  20. X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. M. Weng, Z. Fang, X. Dai, and G. Chen, Observation of the chiral anomaly induced negative magnetoresistance in 3D Weyl semimetal TaAs, Phys. Rev. X 5(3), 031023 (2015)

    Google Scholar 

  21. C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski, J. Wosnitza, Z. Liu, Y. Chen, W. Schnelle, H. Borrmann, Y. Grin, C. Felser, and B. H. Yan, Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP, Nat. Phys. 11(8), 645 (2015)

    Article  Google Scholar 

  22. Z. Wang, Y. Zheng, Z. X. Shen, Y. Zhou, X. J. Yang, Y. P. Li, C. M. Feng, and Z. A. Xu, Helicity protected ultrahigh mobility Weyl fermions in NbP, Phys. Rev. B 93, 121112(R) (2016)

    Article  ADS  Google Scholar 

  23. A. Narayanan, M. D. Watson, S. F. Blake, N. Bruyant, L. Drigo, Y. L. Chen, D. Prabhakaran, B. Yan, C. Felser, T. Kong, P. C. Canfield, and A. I. Coldea, Linear magnetoresistance caused by mobility fluctuations in n-doped Cd3As2, Phys. Rev. Lett. 114(11), 117201 (2015)

    Article  ADS  Google Scholar 

  24. P. Hosur and X. L. Qi, Recent developments in transport phenomena in Weyl semimetals, C. R. Phys. 14(9–10), 857 (2013)

    Article  ADS  Google Scholar 

  25. I. A. Luk’yanchuk and Y. Kopelevich, Phase analysis of quantum oscillation in graphite, Phys. Rev. Lett. 93(16), 166402 (2004)

    Article  ADS  Google Scholar 

  26. H. B. Nielsen and M. Ninomiya, The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal, Phys. Lett. B 130(6), 389 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  27. J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger, W. Wang, R. J. Cava, and N. P. Ong, Evidence for the chiral anomaly in the Dirac semimetal Na3Bi, Science 350(6259), 413 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. H. J. Kim, K. S. Kim, J. F. Wang, M. Sasaki, N. Satoh, A. Ohnishi, M. Kitaura, M. Yang, and L. Li, Dirac versus Weyl fermions in topoogical insulators: Adler–Bell–Jackiw anomaly in transport phenomena, Phys. Rev. Lett. 111(24), 246603 (2013)

    Article  ADS  Google Scholar 

  29. Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla, Observation of the chiral magnetic effect in ZrTe5, arXiv: 1412.6543 (2014)

    Google Scholar 

  30. F. Arnold, C. Shekhar, S.- C. Wu, Y. Sun, R. Donizeth dos Reis, N. Kumar, M. Naumann, M. O. Ajeesh, M. Schmidt, A. G. Grushin, J. H. Bardarson, M. Baenitz, D. Sokolov, H. Borrmann, M. Nicklas, C. Felser, E. Hassinger, and B. Yan, Large and unsaturated negative magnetoresistance induced by the chiral anomaly in the Weyl semimetal TaP, arXiv: 1506.06577 (2015)

    Google Scholar 

  31. X. J. Yang, Y. P. Li, Z. Wang, Y. Zheng, and Z. A. Xu, Chiral anomaly induced negative magnetoresistance in topological Weyl semimetal NbAs, arXiv: 1506.03190 (2015)

    Google Scholar 

  32. M. Hirschberger, S. Kushwaha, Z. Wang, Q. Gibson, S. Liang, C. A. Belvin, B. A. Bernevig, R. J. Cava, and N. P. Ong, The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi, Nat. Mater. 15(11), 1161 (2016)

    Article  ADS  Google Scholar 

  33. D. T. Son and B. Z. Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metals, Phys. Rev. B 88(10), 104412 (2013)

    Article  ADS  Google Scholar 

  34. A. A. Burkov, Negative longitudinal magnetoresistance in Dirac and Weyl metals, Phys. Rev. B 91(24), 245157 (2015)

    Article  ADS  Google Scholar 

  35. B. Z. Spivak and A. V. Andreev, Magneto-transport phenomena related to the chiral anomaly in Weyl semimetals, Phys. Rev. B 93(8), 085107 (2016)

    Article  ADS  Google Scholar 

  36. J. S. Hu, T. F. Rosenbaum, and J. B. Betts, Current jets, disorder, and linear magnetoresistance in the silver chalcogenides, Phys. Rev. Lett. 95(18), 186603 (2005)

    ADS  Google Scholar 

  37. J. S. Hu, M. M. Parish, and T. F. Rosenbaum, Nonsaturating magnetoresistance of inhomogeneous conductors: Comparison of experiment and simulation, Phys. Rev. B 75(21), 214203 (2007)

    Article  ADS  Google Scholar 

  38. R. D. dos Reis, M. O. Ajeesh, N. Kumar, F. Arnold, C. Shekhar, M. Naumann, M. Schmidt, M. Nicklas, and E. Hassinger, On the search for the chiral anomaly in Weyl semimetals: The negative longitudinal magnetoresistance, arXiv: 1606.03389 (2016)

    Google Scholar 

  39. C. L. Zhang, S. Y. Xu, I. Belopolski, Z. Yuan, Z. Lin, B. Tong, G. Bian, N. Alidoust, C. C. Lee, S. M. Huang, T. R. Chang, G. Chang, C. H. Hsu, H. T. Jeng, M. Neupane, D. S. Sanchez, H. Zheng, J. Wang, H. Lin, C. Zhang, H. Z. Lu, S. Q. Shen, T. Neupert, M. Z. Hasan, and S. Jia, Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal, Nat. Commun. 7, 10735 (2016)

    Article  ADS  Google Scholar 

  40. T. Besara, D. A. Rhodes, K. W. Chen, S. Das, Q. R. Zhang, J. F. Sun, B. Zeng, Y. Xin, L. Balicas, R. E. Baumbach, E. Manousakis, D. J. Singh, and T. Siegrist, Coexistence of Weyl physics and planar defects in semimetals TaP and TaAs, Phys. Rev. B 93, 245152 (2016), arXiv: 1606.05178

    Article  ADS  Google Scholar 

  41. J. Jiang, F. Tang, X. C. Pan, H. M. Liu, X. H. Niu, Y. X. Wang, D. F. Xu, H. F. Yang, B. P. Xie, F. Q. Song, P. Dudin, T. K. Kim, M. Hoesch, P. K. Das, I. Vobornik, X. G. Wan, and D. L. Feng, Signature of strong spin-orbital coupling in the large nonsaturating magnetoresistance material WTe2, Phys. Rev. Lett. 115(16), 166601 (2015)

    Article  ADS  Google Scholar 

  42. K. Y. Bliokh, Weak antilocalization of ultrarelativistic fermions, Phys. Lett. A 344(2–4), 127 (2005)

    Article  ADS  MATH  Google Scholar 

  43. S. Hikami, A. I. Larkin, and Y. Nagaoka, Spinorbital interaction and magnetoresistance in the twodimensional random system, Prog. Theor. Phys. 63(2), 707 (1980)

    Article  ADS  Google Scholar 

  44. H. Wang, H. Liu, C. Z. Chang, H. Zuo, Y. Zhao, Y. Sun, Z. Xia, K. He, X. Ma, X. C. Xie, Q. K. Xue, and J. Wang, Crossover between weak antilocalization and weak localization of bulk states in ultrathin Bi2Se3 films, Sci. Rep. 4, 5817 (2014)

    Article  Google Scholar 

  45. C. J. Lin, X. Y. He, J. Liao, X. X. Wang, V. Sacksteder IV, W. M. Yang, T. Guan, Q. M. Zhang, L. Gu, G. Y. Zhang, C. G. Zeng, X. Dai, K. H. Wu, and Y. Q. Li, Parallel field magnetoresistance in topological insulator thin films, Phys. Rev. B 88, 041307(R) (2013)

    Article  ADS  Google Scholar 

  46. A. Kawabata, Theory of negative magnetoresistance i. application to heavily doped semiconductors, J. Phys. Soc. Jpn. 49(2), 628 (1980)

    Article  ADS  Google Scholar 

  47. Y. Kopelevich, J. H. S. Torres, R. R. da Silva, F. Mrowka, H. Kempa, and P. Esquinazi, Reentrant metallic behavior of graphite in the quantum limit, Phys. Rev. Lett. 90(15), 156402 (2003)

    Article  ADS  Google Scholar 

  48. B. Fauqué, B. Vignolle, C. Proust, J. P. Issi, and K. Behnia, Electronic instability in bismuth far beyond the quantum limit, New J. Phys. 11(11), 113012 (2009)

    Article  ADS  Google Scholar 

  49. Y. P. Li, Z. Wang, Y. H. Lu, X. J. Yang, Z. X. Shen, F. Sheng, C. Feng, Y. Zheng, and Z.-A. Xu, Negative magnetoresistance in topological semimetals of transitionmetal dipnictides with non-trivial Z2 indices, arXiv: 1603.04056 (2016)

    Google Scholar 

  50. B. Shen, X. Y. Deng, G. Kotliar, and N. Ni, Fermi surface topology and negative longitudinal magnetoresistance observed in centrosymmetric NbAs2 semimetal, arXiv: 1602.01795 (2016)

    Google Scholar 

  51. Y. K. Luo, R. D. McDonald, P. F. S. Rosa, B. Scott, N. Wakeham, N. J. Ghimire, E. D. Bauer, J. D. Thompson, and F. Ronning, Anomalous magnetoresistance in TaAs2, arXiv: 1601.05524 (2016)

    Google Scholar 

  52. Z. Wang, Y. P. Li, Y. H. Lu, Z. X. Shen, F. Sheng, C. M. Feng, Y. Zheng, and Z. A. Xu, Topological phase transition induced extreme magnetoresistance in TaSb2, arXiv: 1603.01717 (2016)

    Google Scholar 

  53. V. K. Dugaev and D. E. Khmelnitskii, Magnetoresistance of metal films with low impurity concentration in a parallel magnetic field, Sov. Phys. JETP 59, 1038 (1984)

    Google Scholar 

  54. A. K. Mitchell and L. Fritz, Kondo effect in threedimensional Dirac and Weyl systems, Phys. Rev. B 92, 121109(R) (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (Grant No. 2014CB921203), the National Science Foundation of China (Grant Nos. 11190023, U1332209, 11374009, 61574123, and 11574264), MOE of China (Grant No. 2015KF07), the Fundamental Research Funds for the Central Universities of China, and the National Key R&D Program of the MOST of China (Grant No. 2016YFA0300204). The in-situ high-pressure angle-dispersive X-ray diffraction (ADXRD) measurement was performed at the 4W2 beamline of the Beijing Synchrotron Radiation Facility (BSRF). Y.Z. acknowledges the start funding support from the Thousand Talents Plan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Zheng or Zhu-An Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, Z., Li, P. et al. Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects. Front. Phys. 12, 127205 (2017). https://doi.org/10.1007/s11467-016-0636-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-016-0636-8

Keywords

Navigation