Skip to main content
Log in

Tunable nano Peltier cooling device from geometric effects using a single graphene nanoribbon

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Based on the phenomenon of curvature-induced doping in graphene we propose a class of Peltier cooling devices, produced by geometrical effects, without gating. We show how a graphene nanoribbon laid on an array of curved nano cylinders can be used to create a targeted and tunable cooling device. Using two different approaches, the Nonequilibrium Green’s Function (NEGF) method and experimental inputs, we predict that the cooling power of such a device can approach the order of kW/cm2, on par with the best known techniques using standard superlattice structures. The structure proposed here helps pave the way toward designing graphene electronics which use geometry rather than gating to control devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. H. Zeng, X. F. Fan, C. LaBounty, E. Croke, Y. Zhang, J. Christofferson, D. Vashaee, A. Shakouri, and J. E. Bowers, Cooling power density of SiGe/Si superlattice micro refrigerators, Volume 793 of Materials Research Society Symposium Proceedings, Materials Research Society, 2004

    Google Scholar 

  2. I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, and R. Venkatasubramanian, On-chip cooling by superlattice-based thin-film thermoelectrics, Nat. Nanotechnol., 2009, 4(4): 235

    Article  ADS  Google Scholar 

  3. X. Fan, G. Zeng, E. Croke, C. LaBounty, C. C. Ahn, D. Vashaee, A. Shakouri, and J. E. Bowers, High cooling power density SiGe/Si micro-coolers, Electron. Lett., 2001, 37(2): 126

    Article  Google Scholar 

  4. A. Shakouri and Yan Zhang, On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators, IEEE Trans. Compon. Packag. Tech., 2005, 28(1): 65

    Article  Google Scholar 

  5. J. Zhang, N. G. Anderson, and K. M. Lau, AlGaAs superlattice microcoolers, Appl. Phys. Lett., 2003, 83(2): 374

    Article  ADS  Google Scholar 

  6. H. Y. Chiu, V. Perebeinos, Y. M. Lin, and P. Avouris, Controllable p-n junction formation in monolayer graphene using electrostatic substrate engineering, Nano Lett., 2010, 10(11): 4634

    Article  ADS  Google Scholar 

  7. G. Liu, J. Velasco, and W. Bao, and C. N. Lau, Fabrication of graphene p-n-p junctions with contactless top gates., Appl. Phys. Lett., 2008, 92(20): 203103

    Article  ADS  Google Scholar 

  8. S. G. Nam, D. K. Ki, J. W. Park, Y. Kim, J. S. Kim, and H. J. Lee, Ballistic transport of graphene p-n-p junctions with embedded local gates, Nanotechnology, 2011, 22(41): 415203

    Article  Google Scholar 

  9. B. Öyilmaz, P. Jarillo-Herrero, D. Efetov, D. Abanin, L. Levitov, and P. Kim, Electronic transport and quantum Hall effect in bipolar graphene p-n-p junctions, Phys. Rev. Lett., 2007, 99(16): 166804

    Article  ADS  Google Scholar 

  10. G. Rao, M. Freitag, H. Y. Chiu, R. S. Sundaram, and P. Avouris, Raman and photocurrent imaging of electrical stress-induced p-n junctions in graphene, ACS Nano, 2011, 5(7): 5848

    Article  Google Scholar 

  11. J. R. Williams, L. DiCarlo, and C. M. Marcus, Quantum Hall effect in a gate-controlled p-n junction of graphene, Science, 2007, 317(5838): 638

    Article  ADS  Google Scholar 

  12. T. Yu, C. W. Liang, C. Kim, and B. Yu, Local electrical stress-induced doping and formation of monolayer graphene P-N junction, Appl. Phys. Lett., 2011, 98(24): 243105

    Article  ADS  Google Scholar 

  13. H. C. Cheng, R. J. Shiue, C. C. Tsai, W. H. Wang, and Y. T. Chen, High-quality graphene p-n junctions via resistfree fabrication and solution-based noncovalent functionalization, ACS Nano, 2011, 5(3): 2051

    Article  Google Scholar 

  14. T. Lohmann, K. von Klitzing, and J. H. Smet, Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping, Nano Lett., 2009, 9(5): 1973

    Article  ADS  Google Scholar 

  15. E. A. Kim and A. H. Castro Neto, Graphene as an electronic membrane, Europhys. Lett., 2008, 84(5): 57007

    Article  ADS  Google Scholar 

  16. D. Rowe, Thermoelectrics Handbook: Macro to Nano, Boca Raton: CRC/Taylor and Francis, 2006

    Google Scholar 

  17. P. Wei, W. Z. Bao, Y. Pu, C. N. Lau, and J. Shi, Anomalous thermoelectric transport of Dirac particles in graphene, Phys. Rev. Lett., 2009, 102(16): 166808

    Article  ADS  Google Scholar 

  18. S. Datta, Quantum Transport: Atom to transistor, Cambridge: Cambridge University Press, 2005

    Google Scholar 

  19. Y. Ouyang and J. Guo, A theoretical study on thermoelectric properties of graphene nanoribbons, Appl. Phys. Lett., 2009, 94(26): 263107

    Article  ADS  Google Scholar 

  20. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 2004, 306(5696): 666

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dao-Xin Yao or E. W. Carlson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, WJ., Yao, DX. & Carlson, E.W. Tunable nano Peltier cooling device from geometric effects using a single graphene nanoribbon. Front. Phys. 9, 472–476 (2014). https://doi.org/10.1007/s11467-014-0415-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-014-0415-3

Keywords

Navigation