Skip to main content
Log in

A review of direct numerical simulations of astrophysical detonations and their implications

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use onedimensional DNS of detonations as inputs or constraints for their whole star simulations.While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerable effort has been expended modeling Type Ia supernovae at densities above 1×107 g·cm−3 where the complexities of turbulent burning dominate the flame propagation. However, most full star models turn the nuclear burning schemes off when the density falls below 1×107 g·cm−3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. This work will review the status of DNS studies of detonations and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman-Jouguet (CJ) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Notes

  1. W. Arnett, Astrophysics and Space Sciences, 1969, 5: 180

    Article  ADS  Google Scholar 

  2. S. Woosley and T. Weaver, Ann. Rev. Astron. Astrophys., 1986, 24: 205

    Article  ADS  Google Scholar 

  3. A. Filippenko, Ann. Rev. Astron. Astrophys., 1997, 35: 309

    Article  ADS  Google Scholar 

  4. D. Kasen, F. Röpke, and S. Woosley, Nature, 2009, 460: 869

    Article  ADS  Google Scholar 

  5. E. S. Oran, V. N. Gamezo, and D. A. Kessler, Tech. Rep. RL/MR/6400-11-9332, Naval Research Laboratory, 2011

    Google Scholar 

  6. A. Y. Poludnenko, T. A. Gardiner, and E. S. Oran, Phys. Rev. Lett., 2011, 107(5): 054501

    Article  ADS  Google Scholar 

  7. F. Timmes and S. Woosley, Astrophys. J., 1992, 396: 649

    Article  ADS  Google Scholar 

  8. A. Calder, D. Townsley, I. Seitenzahl, F. Peng, O. Messer, N. Vladimirova, E. Brown, J. Truran, and D. Lamb, Astrophys. J., 2007, 656: 313

    Article  ADS  Google Scholar 

  9. D. Chapman, Philosophical Magazine, 1899, 47: 90

    Article  MATH  Google Scholar 

  10. J. Jouguet, J. Math. Pure Appl., 1905, 1: 347

    Google Scholar 

  11. B. Fryxell, E. A. Muller, and D. Arnett, Max Plank Institute for Astrophysics, Pre-print, 1989: 449

    Google Scholar 

  12. W. Fickett and W. Davis, Detonation: Theory and Experiment, Courier Dover, 1979

    Google Scholar 

  13. Y. Zeldovitch, Zh. Eksp. Teor. Fiz., 1940, 10: 524

    Google Scholar 

  14. J. von Neumann, OSRD Reports, 1942: 549: 1

    Google Scholar 

  15. W. Döring, Annalen der Physik, 1943: 435

    Google Scholar 

  16. F. X. Timmes and F. D. Swesty, Astrophys. J. Suppl., 2000, 126: 501

    Article  ADS  Google Scholar 

  17. L. D. Landau and E. M. Lifhshitz, Fluid Mechanics, Pergamon Press, 1959

    Google Scholar 

  18. D. Arnett, Supernovae and Nucleosynthesis: An Investigation of the History of Matter, from the Big Bang to the Present, Princeton: Princeton University Press, 1996

    Google Scholar 

  19. B. Fryxell, K. Olsen, P. Ricker, F. Timmes, M. Zingale, D. Lamb, P. MacNeice, R. Rosner, J. Truran, and H. Tufo, Astrophys. J. Suppl., 2000, 131: 273

    Article  ADS  Google Scholar 

  20. E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flow, Cambridge: Cambridge University Press, 1987

    MATH  Google Scholar 

  21. J. P. Boris, A. M. Landsberg, E. S. Oran, and J. H. Gardner, LCPFCT-A Flux-Corrected Transport Algorithm for Solving Generalized Continuity Equations, Tech. Rep., Naval Research Lab, 1993

    Google Scholar 

  22. P. Colella and P. Woodward, J. Comput. Phys., 1984, 54: 174

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. G. Sharpe, Mon. Not. R. Astron. Soc., 1999, 310: 1039

    Article  ADS  Google Scholar 

  24. W. Hix, A. M. Khokhlov, J. C. Wheeler, and F. Thielemann, Astrophys. J., 1998, 503: 332

    Article  ADS  Google Scholar 

  25. F. X. Timmes, R. D. Hoffman, and S. E. Woosley, Astrophys. J. Suppl., 2000a, 129: 377

    Article  ADS  Google Scholar 

  26. W. R. Hix, S. T. Parete-Koon, C. Freiburghaus, and F.-K. Thielemann, Astrophys. J., 2007, 667: 476

    Article  ADS  Google Scholar 

  27. M. W. Guidry, J. Comput. Phys., 1012, 232: 5266

  28. S. Godunov, Matematicheskii Sbornik, 1959, 47: 165

    MathSciNet  Google Scholar 

  29. C. Arnold, Ph.D. thesis, University of Michigan, 1985

  30. P. Lax and B. Wendroff, Communications on Pure and Applied Mathematics, 1960, 13: 217

    Article  MathSciNet  MATH  Google Scholar 

  31. P. Lax and B. Wendroff, Communications on Pure and Applied Mathematics, 1964, 17: 381

    Article  MathSciNet  MATH  Google Scholar 

  32. R. A. Gentry, R. E. Martin, and B. J. Daley, J. Comput. Phys., 1966, 1: 87

    Article  ADS  MATH  Google Scholar 

  33. F. Thielemann, 1985 (private communication)

  34. Y. N. Denisav and Y. K. Troshin, Dokl. Akad. Nauk SSSR (Phys.-Chem. Sec.), 1959, 125: 110

    Google Scholar 

  35. B. V. Voitsekhovsky, V. V. Mitrofanov, and M. E. Topchian, Izd. Akad. Nauk SSSR, 1963

    Google Scholar 

  36. I. Dominguez and A. Khokhlov, Astrophys. J., 2011, 730: 87

    Article  ADS  Google Scholar 

  37. F. Timmes, R. Hoffman, and S. Woosley, Astrophys. J., 2000b, 129: 377

    Article  ADS  Google Scholar 

  38. J. E. Shepherd, in: Proceedings of the Combustion Institute, 2009

    Google Scholar 

  39. D. Stewart and A. Kasimov, Journal of Propulsion and Power, 2006, 22: 1230

    Article  Google Scholar 

  40. A. Khokhlov, Mon. Not. R. Astron. Soc., 1989, 239: 785

    ADS  MATH  Google Scholar 

  41. J. H. Lee, Annual Review of Fluid Mechanics, 1984, 16: 311

    Article  ADS  Google Scholar 

  42. A. M. Khokhlov, Astrophys. J., 1993, 419: 200

    Article  ADS  Google Scholar 

  43. J. Boisseau, J. Wheeler, E. Oran, and A. Khokhlov, Astrophys. J., 1996, 471: L99

  44. V. N. Gamezo, J. Wheeler, A. Khokhlov, and E. Oran, Astrophys. J., 1999, 512: 827

    Article  ADS  Google Scholar 

  45. A. C. Calder, B. C. Curtis, L. J. Dursi, B. Fryxell, G. Henry, P. MacNeice, K. Olson, P. Ricker, R. Rosner, F. X. Timmes, et al., in: Super Computing Gordon Bell Prize Paper, 2000

    Google Scholar 

  46. D. N. Williams, L. Bauwens, and E. S. Oran, Symposium on Combustion and Flame, and Explosion Phenomena, 1996, 26: 2991

    Google Scholar 

  47. S. Parete-Koon, C. Smith, M. Guidry, R. Hix, and O. Messer, J. Phys., 2012 (in press)

    Google Scholar 

  48. A. Maier and J. Niemeyer, Astron. Astrophys., 2006, 451: 207

    Article  ADS  Google Scholar 

  49. C. A. Meakin, I. Sietenzahl, D. Townsley, G. C. J. IV, J. Truran, and D. Lamb, Astrophys. J., 2009, 693: 1188

    Article  ADS  Google Scholar 

  50. A. M. Khokhlov, Astrophys. J., 1995, 449: 695

    Article  ADS  Google Scholar 

  51. M. Zingale, S. Woosley, C. A. Rendleman, M. Day, and J. B. Bell, Astrophys. J., 2005, 632: 1021

    Article  ADS  Google Scholar 

  52. A. P. Jackson, A. C. Calder, D. M. Townsley, D. A. Chamulak, E. F. Brown, and F. X. Timmes, Astrophys. J., 2010, 720: 99

    Article  ADS  Google Scholar 

  53. D. M. Townsley, A. P. Jackson, A. C. Calder, D. A. Chamulak, E. F. Brown, and F. X. Timmes, Astrophys. J., 2009, 701: 1582, 1604

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne T. Parete-Koon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parete-Koon, S.T., Smith, C.R., Papatheodore, T.L. et al. A review of direct numerical simulations of astrophysical detonations and their implications. Front. Phys. 8, 189–198 (2013). https://doi.org/10.1007/s11467-013-0279-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0279-y

Keywords

Navigation