Skip to main content
Log in

Loop quantum modified gravity and its cosmological application

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

A general nonperturvative loop quantization procedure for metric modified gravity is reviewed. As an example, this procedure is applied to scalar-tensor theories of gravity. The quantum kinematical framework of these theories is rigorously constructed. Both the Hamiltonian and master constraint operators are well defined and proposed to represent quantum dynamics of scalar-tensor theories. As an application to models, we set up the basic structure of loop quantum Brans-Dicke cosmology. The effective dynamical equations of loop quantum Brans-Dicke cosmology are also obtained, which lay a foundation for the phenomenological investigation to possible quantum gravity effects in cosmology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Rovelli, Quantum Gravity, Cambridge: Cambridge University Press, 2004

    Book  MATH  Google Scholar 

  2. T. Thiemann, Modern Canonical Quantum General Relativity, Cambridge: Cambridge University Press, 2007

    Book  Google Scholar 

  3. A. Ashtekar and J. Lewandowski, Class. Quantum Gravity, 2004, 21(15): R53

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. M. Han, Y. Ma, and W. Huang, Int. J. Mod. Phys. D, 2007, 16(09): 1397

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. X. Zhang and Y. Ma, Phys. Rev. Lett., 2011, 106(17): 171301

    Article  ADS  Google Scholar 

  6. X. Zhang and Y. Ma, Phys. Rev. D, 2011, 84(6): 064040

    Article  ADS  Google Scholar 

  7. X. Zhang and Y. Ma, J. Phys.: Conf. Ser., 2012, 360: 012055

    Article  ADS  Google Scholar 

  8. X. Zhang and Y. Ma, Phys. Rev. D, 2011, 84(10): 104045

    Article  ADS  Google Scholar 

  9. J. Friemann, M. Turner, and D. Huterer, Annu. Rev. Astron. Astrophys., 2008, 46: 385

    Article  ADS  Google Scholar 

  10. C. Brans and R. H. Dicke, Phys. Rev., 1961, 124(3): 925

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. P. G. Bergmann, Int. J. Theor. Phys., 1968, 1(1): 25

    Article  Google Scholar 

  12. R. Wagoner, Phys. Rev. D, 1970, 1(12): 3209

    Article  MathSciNet  ADS  Google Scholar 

  13. T. R. Tayler and G. Veneziano, Phys. Lett. B, 1988, 213: 450

    Article  ADS  Google Scholar 

  14. K. I. Maeda, Mod. Phys. Lett. A, 1988, 2(03): 243

    Article  ADS  Google Scholar 

  15. T. Damour, F. Piazza, and G. Veneziano, Phys. Rev. Lett., 2002, 89(8): 081601

    Article  ADS  Google Scholar 

  16. B. Boisseau, G. Esposito-Farese, D. Polarski, and A. A. Starobinsky, Phys. Rev. Lett., 2000, 85(11): 2236

    Article  ADS  Google Scholar 

  17. N. Benerjee and D. Pavon, Phys. Rev. D, 2001, 63: 043504

    Article  ADS  Google Scholar 

  18. B. Boisseau, Phys. Rev. D, 2011, 83(4): 043521

    Article  ADS  Google Scholar 

  19. L. Qiang, Y. Ma, M. Han, and D. Yu, Phys. Rev. D, 2005, 71: 061501 (R)

    Article  ADS  Google Scholar 

  20. T. H. Lee and B. J. Lee, Phys. Rev. D, 2004, 69(12): 127502

    Article  MathSciNet  ADS  Google Scholar 

  21. R. Catena, N. Fornengo, A. Masiero, M. Pietroni, and F. Rosati, Phys. Rev. D, 2004, 70(6): 063519

    Article  ADS  Google Scholar 

  22. H. Kim, Phys. Lett. B, 2005, 606(3–4): 223

    ADS  MATH  Google Scholar 

  23. C. M. Will, Living Rev. Relativity, 2006, 9: 3

    ADS  Google Scholar 

  24. T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys., 2010, 82(1): 451

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. P. Horava, Phys. Rev. D, 2009, 79(8): 084008

    Article  MathSciNet  ADS  Google Scholar 

  26. H. Lü and C. N. Pope, Phys. Rev. Lett., 2011, 106(18): 181302

    Article  ADS  Google Scholar 

  27. Y. Ma, J. Phys.: Conf. Ser., 2012, 360: 012006

    Article  ADS  Google Scholar 

  28. A. Ashtekar, Phys. Rev. Lett., 1986, 57(18): 2244

    Article  MathSciNet  ADS  Google Scholar 

  29. J. Barbero, Phys. Rev. D, 1995, 51: 5507

    Article  MathSciNet  ADS  Google Scholar 

  30. G. J. Olmo and H. Sanchis-Alepuz, Phys. Rev. D, 2011, 83(10): 104036

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Ashtekar, J. Lewandowski, and H. Sahlmann, Class. Quantum Gravity, 2003, 20(1): L11

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. C. Rovelli and L. Smolin, Nucl. Phys. B, 1995, 442(3): 593

    Article  MathSciNet  ADS  Google Scholar 

  33. A. Ashtekar and J. Lewandowski, Adv. Theor. Math. Phys., 1998, 1: 388

    MathSciNet  Google Scholar 

  34. T. Thiemann, J. Math. Phys., 1998, 39(6): 3372

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Y. Ma, C. Soo, and J. Yang, Phys. Rev. D, 2010, 81(12): 124026

    Article  MathSciNet  ADS  Google Scholar 

  36. M. Han and Y. Ma, Class. Quantum Gravity, 2006, 23(7): 2741

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. T. Thiemann, Class. Quantum Gravity, 2006, 23(7): 2211

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. M. Han and Y. Ma, Phys. Lett. B, 2006, 635(4): 225

    Article  MathSciNet  ADS  Google Scholar 

  39. X. Zhang and Y. Ma, arXiv:1211.4183, 2012

  40. A. Ashtekar, M. Bojowald, and J. Lewandowski, Adv. Theor. Math. Phys., 2003, 7: 233

    MathSciNet  Google Scholar 

  41. A. Ashtekar and P. Singh, Class. Quantum Gravity, 2011, 28(21): 213001

    Article  MathSciNet  ADS  Google Scholar 

  42. A. Ashtekar, Gen. Relativ. Gravit., 2009, 41(4): 707

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. A. Ashtekar, T. Pawlowski, and P. Singh, Phys. Rev. D, 2006, 74(8): 084003

    Article  MathSciNet  ADS  Google Scholar 

  44. V. Taveras, Phys. Rev. D, 2008, 78(6): 064072

    Article  MathSciNet  ADS  Google Scholar 

  45. Y. Ding, Y. Ma, and J. Yang, Phys. Rev. Lett., 2009, 102(5): 051301

    Article  MathSciNet  ADS  Google Scholar 

  46. J. Yang, Y. Ding, and Y. Ma, Phys. Lett. B, 2009, 682(1): 1

    Article  MathSciNet  ADS  Google Scholar 

  47. M. Bojowald, D. Brizuela, H. H. Hernandez, M. J. Koop, and H. A. Morales-Tecotl, Phys. Rev. D, 2011, 84(4): 043514

    Article  ADS  Google Scholar 

  48. A. Ashtekar, M. Campiglia, and A. Henderson, Phys. Rev. D, 2010, 82(12): 124043

    Article  ADS  Google Scholar 

  49. L. Qin, H. Huang, and Y. Ma Path integral and effective Hamiltonian in loop quantum cosmology, Gen. Relativ. Gravit. (submitted)

  50. L. Qin, G. Deng, and Y. Ma, Commun. Theor. Phys., 2012, 57(2): 326

    Article  ADS  MATH  Google Scholar 

  51. L. Qin and Y. Ma, Phys. Rev. D, 2012, 85(6): 063515

    Article  ADS  Google Scholar 

  52. L. Qin and Y. Ma, Mod. Phys. Lett., 2012, 27(15): 1250078

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Dong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XD., Ma, YG. Loop quantum modified gravity and its cosmological application. Front. Phys. 8, 80–93 (2013). https://doi.org/10.1007/s11467-013-0277-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0277-0

Keywords

Navigation