Skip to main content
Log in

Understanding formation of molecular rotor array on Au(111) surface

  • Mini-Review Article
  • Published:
Frontiers of Physics in China Aims and scope Submit manuscript

Abstract

The motion of single molecules on surfaces plays an important role in nanoscale engineering and bottom-up construction of complex devices at single molecular scale. In this article, we review the recent progress on single molecular rotors self-assembled on Au(111) surfaces. We focus on the motion of single phthalocyanine molecules on the reconstructed Au(111) surface based on the most recent results obtained by scanning tunneling microscopy (STM). An ordered array of single molecular rotors with large scale is self-assembled on Au(111) surface. Combined with first principle calculations, the mechanism of the surface-supported molecular rotor is investigated. Based on these results, phthalocyanine molecules on Au (111) are a promising candidate system for the development of adaptive molecular device structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. V. Barth, G. Costantini, and K. Kern, Nature, 2005, 437: 671

    Article  ADS  Google Scholar 

  2. J. V. Barth, Annu. Rev. Phys. Chem., 2007, 58: 375

    Article  ADS  Google Scholar 

  3. A. R. Pease, J. O. Jeppesen, J. F. Stoddart, Y. Luo, C. P. Collier, and J. R. Heath, Acc. Chem. Res., 2001, 34: 433

    Article  Google Scholar 

  4. A. Facchetti, M. H. Yoon, and T. J. Marks, Adv. Mater., 2005, 17,1705

    Google Scholar 

  5. O. M. Yaghi, O. K. M, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim, Nature, 2003, 423: 705

    Article  ADS  Google Scholar 

  6. Q. Liu, Y. Y. Zhang, N. Jiang, H. G. Zhang, L. Gao, S. X. Du, and H. J. Gao, Phys. Rev. Lett., 2010, 104: 166101

    Article  ADS  Google Scholar 

  7. N. Jiang, Y. Y. Zhang, Q. Liu, Z. H. Cheng, Z. T. Deng, S. X. Du, H. J. Gao, M. J. Beck, and S. T. Pantelides, Nano Lett., 2010, 10: 1184

    Article  ADS  Google Scholar 

  8. H. J. Gao and L. Gao, Prog. Surf. Sci., 2010, 85: 28

    Article  ADS  Google Scholar 

  9. W. Ji, Z. Y. Lu, and H. Gao, Phys. Rev. Lett., 2007, 99(5): 059602

    Article  ADS  Google Scholar 

  10. L. Gao, W. Ji, Y. B. Hu, Z. H. Cheng, Z. T. Deng, Q. Liu, N. Jiang, X. Lin, W. Guo, S. X. Du, W. A. Hofer, X. C. Xie, and H. J. Gao, Phys. Rev. Lett., 2007, 99: 106402

    Article  ADS  Google Scholar 

  11. M. Feng, L. Gao, S. X. Du, Z. T. Deng, Z. H. Cheng, W. Ji, D. Q. Zhang, X. F. Guo, X. Lin, L. F. Chi, D. B. Zhu, H. Fuchs, and H. J. Gao, Adv. Funct. Mater., 2007, 17: 770

    Article  Google Scholar 

  12. D. Shi, W. Ji, X. Lin, X. He, J. Lian, L. Gao, J. Cai, H. Lin, S. Du, F. Lin, C. Seidel, L. Chi, W. Hofer, H. Fuchs, and H. J. Gao, Phys. Rev. Lett., 2006, 96: 226101

    Article  ADS  Google Scholar 

  13. L. Gao, Z. T. Deng, W. Ji, X. Lin, Z. H. Cheng, X. B. He, D. X. Shi, and H. J. Gao, Phys. Rev. B, 2006, 73: 075424

    Article  ADS  Google Scholar 

  14. M. Feng, X. F. Guo, X. Lin, X. B. He, W. Ji, S. X. Du, D. Q. Zhang, D. B. Zhu, and H. J. Gao, J. Am. Chem. Soc., 2005, 127: 15338

    Article  Google Scholar 

  15. Y. L. Wang, W. Ji, D. X. Shi, S. X. Du, C. Seidel, Y. G. Ma, H. J. Gao, L. F. Chi, and H. Fuchs, Phys. Rev. B, 2004, 69: 075408

    Article  ADS  Google Scholar 

  16. L. Gao, Q. Liu, Y. Y. Zhang, N. Jiang, H. G. Zhang, Z. H. Cheng, W. F. Qiu, S. X. Du, Y. Q. Liu, W. A. Hofer, and H. J. Gao, Phys. Rev. Lett., 2008, 101: 197209

    Article  ADS  Google Scholar 

  17. G. S. Kottas, L. I. Clarke, D. Horinek, and J. Michl, Chem. Rev., 2005, 105: 1281

    Article  Google Scholar 

  18. J. Vacek and J. Michl, Adv. Funct. Mater., 2007, 17: 730

    Article  Google Scholar 

  19. D. Zhong, T. Blomker, K. Wedeking, L. Chi, G. Erker, and H. Fuchs, Nano Lett., 2009, 9: 4387

    Article  ADS  Google Scholar 

  20. J. Vacek and J. Michl, Proc. Natl. Acad. Sci. USA, 2001, 98: 5481

    Article  ADS  Google Scholar 

  21. P. Kral and H. R. Sadeghpour, Phys. Rev. B, 2002, 65: 161401

    Article  ADS  Google Scholar 

  22. S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, Nano Lett., 2004, 4: 1415

    Article  ADS  Google Scholar 

  23. J. Berna, D. A. Leigh, M. Lubomska, S. M. Mendoza, E. M. Perez, P. Rudolf, G. Teobaldi, and F. Zerbetto, Nature Mater., 2005, 4: 704

    Article  ADS  Google Scholar 

  24. K. Petr and S. J. Tamar, Chem. Phys., 2005, 123: 184702

    Google Scholar 

  25. J. E. Green, J. Wook Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. Shik Shin, H. R. Tseng, J. F. Stoddart, and J. R. Heath, Nature, 2007, 445: 414

    Article  ADS  Google Scholar 

  26. T. R. Kelly, H. De Silva, and R. A. Silva, Nature, 1999, 401: 150

    Article  ADS  Google Scholar 

  27. K. V. Mikkelsen and M. A. Ratner, Chem. Rev., 1987, 87: 113

    Article  Google Scholar 

  28. P. Kral, Phys. Rev. B, 1997, 56: 7293

    Article  ADS  Google Scholar 

  29. R. A. Van Delden, M. K. J. ter Wiel, M. M. Pollard, J. Vicario, N. Koumura, and B. L. Feringa, Nature, 2005, 437: 1337

    Article  ADS  Google Scholar 

  30. G. London, G. T. Carroll, T. F. Landaluce, M. M. Pollard, P. Rudolf, and B. L. Feringa, Chem. Commun., 2009: 1712

  31. C. Manzano, W. H. Soe, H. S. Wong, F. Ample, A. Gourdon, N. Chandrasekhar, and C. Joachim, Nature Mater., 2009, 8: 576

    Article  ADS  Google Scholar 

  32. N. Henningsen, K. J. Franke, I. F. Torrente, G. Sehulze, B. Priewisch, K. Ruck-Braun, J. Dokic, T. Klamroth, P. Saalfrank, and J. I. J. Pascual, Phys. Chem. C, 2007, 111: 14843

    Article  Google Scholar 

  33. B. C. Stipe, M. A. Rezaei, and W. Ho, Science, 1998, 279: 1907

    Article  ADS  Google Scholar 

  34. A. Zhao, Q. Li, L. Chen, H. Xiang, W. Wang, S. Pan, B. Wang, X. Xiao, J. Yang, J. G. Hou, and Q. Zhu, Science, 2005, 309: 1542

    Article  ADS  Google Scholar 

  35. P. Wahl, L. Diekhöer, G. Wittich, L. Vitali, M. A. Schneider, and K. Kern, Phys. Rev. Lett., 2005, 95: 166601

    Article  ADS  Google Scholar 

  36. N. Tsukahara, K.-I. Noto, M. Ohara, S. Shiraki, N. Takagi, Y. Takata, J. Miyawaki, M. Taguchi, A. Chainani, S. Shin, and M. Kawai, Phys. Rev. Lett., 2009, 102: 167203

    Article  ADS  Google Scholar 

  37. X. Chen, Y. S. Fu, S. H. Ji, T. Zhang, P. Cheng, X. C. Ma, X. L. Zou, W. H. Duan, J. F. Jia, and Q. K. Xue, Phys. Rev. Lett., 2008, 101: 197208

    Article  ADS  Google Scholar 

  38. B. C. Stipe, M. A. Rezaei, and W. Ho, Science, 1998, 280: 1732

    Article  ADS  Google Scholar 

  39. J. K. Gimzewski, C. Joachim, R. R. Schlittler, V. Langlais, H. Tang, and I. Johannsen, Science, 1998, 281: 531

    Article  ADS  Google Scholar 

  40. B. C. Stipe, M. A. Rezaei, and W. Ho, Science, 1998, 279: 1907

    Article  ADS  Google Scholar 

  41. J. K. Gimzewski and C. Joachim, Science, 1999, 283: 1683

    Article  ADS  Google Scholar 

  42. J. A. Stroscio and D. M. Eigler, Science, 1991, 254: 1319

    Article  ADS  Google Scholar 

  43. P. Avouris, Acc. Chem. Res., 1995, 28: 95

    Article  Google Scholar 

  44. F. Rosei, M. Schunack, Y. Naitoh, P. Jiang, A. Gourdon, E. Laegsgaard, I. Stensgaard, C. Joachim, and F. Besenbacher, Prog. Surf. Sci., 2003, 71: 95

    Article  ADS  Google Scholar 

  45. C. Joachim, J. K. Gimzewski, and A. Aviram, Nature, 2000, 408: 541

    Article  ADS  Google Scholar 

  46. D. M. Eigler, C. P. Lutz, and W. E. Rudge, Nature, 1991, 352: 600

    Article  ADS  Google Scholar 

  47. C. Wöll, S. Chiang, R. J. Wilson, and P. H. Lippel, Phys. Rev. B, 1989, 39: 7988

    Article  ADS  Google Scholar 

  48. J. V. Barth, H. Brune, G. Ertl, and R. J. Behm, Phys. Rev. B, 1990, 42: 9307

    Article  ADS  Google Scholar 

  49. M. Peter, C. S. Dan, and T. John Yates Jr., Phys. Rev. Lett., 2006, 97: 146103

    Article  Google Scholar 

  50. L. Limot, J. Kröer, R. Berndt, A. Garcia-Lekue, and W. A. Hofer, Phys. Rev. Lett., 2005, 94: 126102

    Article  ADS  Google Scholar 

  51. H. G. Zhang, J. H. Mao, Q. Liu, N. Jiang, H. T. Zhou, H. M. Guo, D. X. Shi, and H. J. Gao, Chin. Phys. B, 2010, 19: 018105

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-jun Gao  (高鸿钧).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, Sx., Wang, Yl., Liu, Q. et al. Understanding formation of molecular rotor array on Au(111) surface. Front. Phys. China 5, 380–386 (2010). https://doi.org/10.1007/s11467-010-0134-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-010-0134-3

Keywords

Navigation